U-net 论文翻译(只有一半,自己看)

Unet:卷积神经网络在医学图片分割的应用

摘要:人们普遍认为深度神经网络需要大量的带标签的样本(数千个)进行训练。在本论文中,我们提出了一个网络和训练策略,更有效的利用了数据,以便更有效地使用可用的带标签的样本。我们使用数据扩张的方法(data augmentation)。由两部分组成:一个收缩路径(contracting path)来获取context information以及一个对称的扩张路径(expanding path)用以精确定位。(The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization.)我们发现这个神经网络使用很少的图片就可以进行端对端的训练(end-to-end )。并且,在ISBI里的电镜下神经元结构的分割挑战中优于之前的方法 (a sliding-window convolutional network)。用这个的网络训练透射电子显微镜图片 (phase contrast and DIC)我们以很大的优势赢得了2015年ISBI的细胞跟踪挑战(ISBI cell tracking challenge)。然后这个神经网络很快。在最新型的GPU上,512x512图像的分割时间不到一秒。 全部的成果和训练好的神经网络可以在(http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net)上获得(基于caffe)。

1 引言

在前两年里,卷积神经网络在许多视觉识别任务中,超过了其他技术水平,例如文献[7,3],然而卷积神经网络已经存在了很长一段时间[8]。因为训练集的规模有限,还要考虑的网络的规模,卷积神经网络一直没有受到重视。Krizhevsky等人[7]于在具有100万张训练图像的ImageNet数据集上对具有8层和数百万个参数的大型网络进行了监督训练。从那之后,很多深度网络都完成了训练。
卷积网络的典型利用是用在分类任务上,其中,图像的输出是单个类标签。然而,在许多视觉任务中,特别是在生物医学图像处理中,希望每个像素的输出应该是多个标签(localization, i.e., a class label)。此外,在生物医学任务中,训练成千上万的图像是不可能的。因此,Ciresan等人[1]训练神经网络(a network in a sliding-window),通过提供像素周围的局部区域(patches)作为输入,来预测每个像素的类标签。

首先,这个网络可以局部化(localize)。其次,从补丁(patches)的角度看,训练数据比训练图像的数量要大得多。这个产生的网络赢得了在2012年的ISBI里的 EM segmentation 挑战。

明显,ciresan等人的方法[1]有两个缺点。首先,它很慢,因为网络必须为每个补丁单独运行,有许多冗余重复的补丁(patches)。其次,localization accuracy和the use of context之间不能全都兼顾。大的补丁( Larger patches)需要更多的最大池( max-pooling)层,从而降低局部的准确性。虽然小补丁只能使网络只看到很少的context。最近的方法[11,4]提出了一个考虑到多层特征的分类器输出。使Good localization和 the use of context同时兼顾有了可能。

在本文中,我们建立在一个更好的架构上,它叫“全卷积网络”(fully convolutional network)[9]。我们修改和扩展了这个架构,使其能够处理很少的训练图像就能产生更精确的分割。如下图。
在这里插入图片描述
U-net体系结构(例如32x32像素的最低分辨率)。每个蓝色框对应一个多通道特征映射。通道的数量表示在框的顶部。x-y大小设置在盒子的左下角.白色框表示复制的功能地图。箭头表示不同的操作。

文献[9]主要想法是用连接层(successive layers)来补充普通的神经网络,其中池操作( pooling operators)被upsampling 操作代替。因此,这些层提高了输出的分辨率(these layers increase the resolution of the output)。为了使用局部的信息(localize),将收缩路径中的高分辨率特征作为上层的输出 (upsampled output)。(In order to localize, high resolution features from the contracting path are combined with the upsampled output)连续卷积层能根据这些信息学习综合,做出更精确的输出。

我们架构中的一个重要修改是,在上采样部分,我们也有大量的特征通道(feature channels),这使得网络能够将context information传播到更高分辨率的层(higher resolution layers)结果是,扩张路径基本对称于收缩路径,形成了一个U型的结构。这个网络不存在任何全连接层(fully connected layers),并且,只使用每个卷积的有效部分。例如,分割图(segmentation map)只包含这样一些像素点,这些像素点的完整的context 都出现在输入图像中。该方法允许通过overlap-tile方法对任意大的图像进行无缝分割(见下图)在这里插入图片描述
overlap-tile方法用于对任意大图像进行无缝分割(这里是对em堆栈中神经元结构的分割)。预测黄色区域的分割,需要输入蓝色区域内的图像数据。缺失的输入数据是通过镜像法(mirroring)推算得到的。

为了预测边框的像素,我们采用镜像输入图像的方式补全缺失的内容(context)。这种的拼接策略对于将网络应用于大型图像是很重要的,因为否则分辨率将受到GPU内存的限制。

我们任务的图片很少,因此我们采用弹性形变的方式增加数据。这种方法不会使原图损坏

  • 7
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值