flink学习(6)之sink

在flink的官方文档中看到,无论是source还是sink都称之为flink的Connectors
在这里插入图片描述
点击overview然后就可以看到它所有的cnnectors
在这里插入图片描述
从上边的图片中我们发现,这些组件不是都作为source和sink,有的可以作为source,有的可以作为sink,有的同时当做source和sink。我们点击Redis(sink)
在这里插入图片描述
可以看到flink提供了一个接口把数据发送的redis中。这个sink可以使用三种不同的方法与redis不同的环境进行通信。
1、Single Redis Server 单节点模式
2、Redis Cluster 集群模式
3、Redis Sentinel 哨兵模式
继续往下看有他针对不同Redis环境的示例,接下来我们就参考人家给出的示例写一个自己的示例:
在写之前我们需要把redis的依赖加入进去,文章的开头其实也写了:

<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>1.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>1.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.bahir</groupId>
            <artifactId>flink-connector-redis_2.11</artifactId>
            <version>1.0</version>
        </dependency>

RedisSink组件

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;

public class MyRedisMapper implements RedisMapper<Tuple2<String, Integer>> {
    public RedisCommandDescription getCommandDescription() {
        return new RedisCommandDescription(RedisCommand.HSET, "HASH_NAME");
    }

    public String getKeyFromData(Tuple2<String, Integer> data) {
        return data.f0;
    }

    public String getValueFromData(Tuple2<String, Integer> data) {
        return data.f1+"";
    }
}

job任务

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.util.Collector;

public class FlinkRedisSinkDemo {
    public static void main(String[] args) throws Exception {
        //获取流执行环境
        StreamExecutionEnvironment senv=StreamExecutionEnvironment.getExecutionEnvironment();
        //获取数据源
        DataStream<String> source=senv.socketTextStream("192.168.112.111",1234);
        DataStream<Tuple2<String,Integer>> data = source.flatMap(new FlatMapFunction<String, Tuple2<String,Integer>>() {
            public void flatMap(String line, Collector<Tuple2<String,Integer>> collector) throws Exception {
                String[] words = line.split(" ");
                for (String word:words
                     ) {
                    collector.collect(new Tuple2<String, Integer>(word,1));
                }
            }
        }).keyBy(0).sum(1);

        FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("192.168.112.111").setPort(6379).build();
        data.addSink(new RedisSink<Tuple2<String, Integer>>(conf, new MyRedisMapper()));
        //执行流失计算
        senv.execute("FlinkRedisSinkDemo");
    }
}

然后我们把redis服务启动了,并在linux操作系统打开一个socket流端口供flink任务链接:
nc -l -p 1234
随后我们启动任务,任务启动之后我们就可以通过socket给flink传数据了
加粗样式
然后我进入redis客户端查看一下这个hash里边的数据
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

枣泥馅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值