傅立叶变换及应用1-傅立叶级数

本文主要是观看斯坦福大学的傅立叶变换及应用课程的一些笔记和感想,记录下来,以备后续查阅。


第一课、傅立叶级数(Fourier Series)和周期现象

傅立叶级数主要是研究周期现象(周期函数)。

傅立叶变换主要是研究非周期现象(非周期函数)。

傅立叶变换可以看成傅立叶级数在周期T趋向无穷大的极限。

理解傅立叶分析首先要理解下面两个概念:

1、分析(analysis)。也就是把一个复杂的信号(函数)分解成较为简单的成分(例如sin、cos函数等)。

2、合成(synthesis)。通过简单的成分重新构造复杂的信号(函数)

analysis和synthesis共同的特点是都涉及线性运算,更多的内容可以参考线性代数。

周期现象包括时间上的周期现象和空间上的周期现象。周期现象和研究对象的对称性相关,例如研究热流在圆环上的分布。

单位圆上的点可以被看成(cosx,sinx),sinx和cosx的周期性都是由于圆的对称性。单位圆上的点在空间中移动了2π的距离则又回到了原点。

描述时间上的周期现象我们使用频率(frequecy)这个词,也就是一秒重复的次数。

描述空间上的周期现象我们使用周期(period)这个词,周期描述了重复的pattern有多大。

两种周期现象可能共存,例如wave motion。


第二课:

我们来研究周期为1的信号,也就是说f(t+1)=f(t)。我们对该函数进行分析,试图将该信号分解成更简单的sin和cos信号。

由于信号周期是1,因此频率也是1,所以用于建模的信号就是sin(2π t)和cos(2π t)。

首先考虑sin(2π t) + sin(4π t) + sin(6π t)+......

将这些频率为1、2、3......的函数加在一起,得到的是一个频率为1的函数。调整各个谐波的幅度和相位,我们可以得到各种各样的复杂的函数。

OK,现在我们考虑相反的问题,是否任何复杂的频率为1(周期为1)的函数都可包含了各个频率成分(1、2、3......)的内容。

我们先假设这个命题成立,也就是说,任何复杂的频率为1(周期为1)的函数都表示为:

f(t) = 对于k=1~N上求和(  Ak  sin(2πkt +pk )  )

pk是各次谐波的相位,Ak是各次谐波的幅度。

首先,先简化问题,去掉相位,也就是说所有的谐波相位固定为0。这样各个谐波不能单纯的表示为sin函数,而是sin和cos的组合(也就是说相位的信息体现在了sin和cos的幅度上)。根据欧拉公式可以进一步简化,谐波表示为exp(2π ikt),i是虚数单位,k是谐波次数。使用幂指数(exponential)虽然好(没有sin和cos),但是谐波的次数从原来的0~n变成-n~n,也就是说引入了负频率的概念。具体的公式是:

f(t) = 对于k=-N~N上求和(  Ck  exp(2π ikt)   )

Ck就是傅立叶系数,表示各次谐波的幅度。

虽然表达式不一样,但是其本质是一样的,都是将周期为一的复杂的信号分解成各次谐波exp(2π ikt)的线性组合。

既然假设了上面的公式成立,那么Ck如何求?过程比较简单,对于m次谐波,利用代数的方法将其移到等式的左边,其他项移到等式的右边,同时乘exp(-2π imt),然后对等式两边求一个周期上的积分。exp(2π ikt)这一组函数应该是函数空间的标准正交基,因此,当不同次谐波的积分应该等于0。这样Ck可以按照下面的公式计算:

Ck = 在0~1上求积分( exp(-2π ikt) f(t) )


第三课:

虽然我们求出了Ck,但是是否真的适用于所有的信号?答案是否定的。
在微积分课程中,我们学习到下面的知识:连续函数的和也是连续函数。
在这样的背景下,一个周期为1,占空比为50%的开关信号是不可能用有限个连续的sin或者cos函数表示出来。
我们可以追加一个问题:一个周期为1锯齿信号是连续的,是否可以用有限个连续的sin或者cos函数表示出来?答案也是否定的。
在微积分课程中,我们学习到下面的知识:可微函数的和也是可微函数。
锯齿信号虽然是连续的,但是不是可微的(一阶就不可微了)。只有足够平滑(任意阶可微)的函数才可以用有限个sin或者cos函数表示出来。

对于那些不够平滑,甚至有不连续点的函数,需要引入无穷级数:
f(t) = 对于k=-∞~∞上求和(  Ck  exp(2π ikt)   )
只要f(t)在一个周期内是一个有限能量信号,就可以保证上面的公式成立。当然,上面公式中的等号仅仅是意味在均方意义下,左右两边相等。
由于引入了无穷项,因此需要考虑收敛性。关于收敛性,还是留给数学家吧。


第四课:

这节课主要是从几何的角度来看待傅立叶级数。
类似向量,我们定义函数的点积。如果f、g都是[0,1]上的平方可积函数,那么可以定义点积(dot product):
<f,g> = 计算[0,1]区间上的积分( f(t) g(t)的共轭 )
如果<f,g>满足:
<f,g> = 0
我们称f和g是正交的(类似几何上的垂直)
<f,f> = ||f||的平方
||f||表示函数的长度或者函数的模。
勾股定理可以定义如下:
在f和g是正交的情况下,下面的等式成立:
||f+g||的平方 = ||f||的平方 + ||g||的平方

了解了上面的基础知识,我们可以来看傅立叶级数中的复指函数集合,这些函数集组成了函数空间中的一组标准正交基。而傅立叶系数Ck就是f(t)在标准正交基上的投影。
因此Ck = <f(t), exp(2πikt)>。



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值