Hadoop(二):只有开发需求情况,即只在windows开发代码,无需创建集群环境等

3 篇文章 1 订阅

Hadoop(二):只有开发需求情况,即只在windows配置开发环境

如果你只是想开发代码,而不需要hadoop集群,那么就可以仅在windows环境下安装hadoop

准备

  • windows编译后的hadoop包,下面提供了windows10编译后的

    链接: https://pan.baidu.com/s/189OTTMOZ8IZLXC3SsWr3TA 提取码: gxsn

  • 配置好java

    这一点就不用多说了,打开cmd输入java -version看看是否配好了java环境变量

  • 开发java代码的IDE

    可以用IDEA;Eclipse

配置环境变量

  1. 配置java环境变量

    这个不用多说了,但是还是要确认一下自己是否配好了,去cmd确认一下

    java -vesion
    

在这里插入图片描述
2. 配置hadoop环境变量

将刚下载的hadoop编译后的包解压,解压到没有英文目录的路径,然后打开环境变量配置。

在系统变量中添加HADOOP_HOME

在这里插入图片描述
在Path中加入

%HADOOP_HOME%\bin

然后确认关闭,打开cmd确认一下

在这里插入图片描述

创建工程

配置Maven,如果使用的IDEA就可以忽略了。

新建Maven项目,在pom添加如下(其中hadoop版本要跟你下载的一致,我这里是2.7.2)

<dependencies>
	<!-- 配置hadoop的日志 -->
    <dependency>
        <groupId>org.apache.logging.log4j</groupId>
        <artifactId>log4j-core</artifactId>
        <version>2.8.2</version>
    </dependency>
    
	<!-- 配置hadoop相应jar包 -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>2.7.2</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>2.7.2</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-hdfs</artifactId>
        <version>2.7.2</version>
    </dependency>
</dependencies>

测试程序

下面程序是修改了源码中的example

package officialWordCount;

import java.io.PrintStream;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;

public class WordCount {

    public static void main(String[] args)
            throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        //将下面的两个位置改为你自己的文件夹位置。
        FileInputFormat.addInputPath(job, new Path("C:\\Users\\Ace\\Desktop\\hadoop\\input\\wordcount"));
        FileOutputFormat.setOutputPath(job, new Path("C:\\Users\\Ace\\Desktop\\hadoop\\output\\wordcount"));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}


class TokenizerMapper
        extends Mapper<Object, Text, Text, IntWritable> {
    private final IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)
            throws IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(value.toString());
        while (itr.hasMoreTokens()) {
            this.word.set(itr.nextToken());
            context.write(this.word, one);
        }
    }
}

class IntSumReducer
        extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context)
            throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        this.result.set(sum);
        context.write(key, this.result);
    }
}

然后运行看看是否有结果。

如果出现
Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z

类似问题那么是因为,hadoop编译后的包与你的机器不匹配,你可以选择重新编译,或者新建一个类覆盖:解决链接如下:

https://blog.csdn.net/u011463794/article/details/105910685

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值