八皇后
在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方。
Input
无输入。
Output
按给定顺序和格式输出所有八皇后问题的解(见Sample Output)。
Sample Input
Sample Output
No. 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No. 2
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No. 3
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No. 4
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No. 5
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No. 6
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No. 7
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No. 8
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No. 9
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
…以下省略
入门经典中用了两种放法来求解皇后问题,第一种是单纯的递归搜索
void search(int cur)
{
if(cur==n) ans++;
else
for(int i=0;i<n;i++)
{ int ok=0;
maze[cur]=i;//尝试把皇后放在该行的每个格子
for(int j=0;j<cur;j++)
{ //若之前有同列皇后或者同对角线皇后
if(maze[cur]==maze[j]||cur-maze[cur]==jmaze[j]||cur+maze[cur]==j+maze[j])
{
ok=0;break;
}
if(ok)
search(cur+1);
}
}
}
这种方法确实可以非常简洁的求出方案的个数,但是不利于记录方案
于是用标记数组的方法来回溯搜索
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int ans[30][30];
int maze[50];
int vis[3][50];
int indx=0;
void dfs(int cul)
{
if(cul==8){
memset(ans,0,sizeof(ans));
indx++;
printf("No. %d\n",indx);
for(int i=0;i<8;i++)
{
ans[maze[i]][i]=1;
}//输出格式是行列互换
for(int i=0;i<8;i++)
for(int j=0;j<8;j++)
{
printf("%d ",ans[i][j]);
if(j==7) printf("\n");
}
}
else
for(int i=0;i<8;i++)
{
if(!vis[0][i]&&!vis[1][cul+i]&&!vis[2][cul-i+8])
{ maze[cul]=i;
vis[0][i]=vis[1][cul+i]=vis[2][cul-i+8]=1;
dfs(cul+1);//回溯法
vis[0][i]=vis[1][cul+i]=vis[2][cul-i+8]=0;
}
}
}
int main()
{ memset(vis,0,sizeof(vis));
memset(maze,0,sizeof(maze));
memset(ans,0,sizeof(ans));
dfs(0);
}
USACO checker Challenge 跳棋的挑战
检查一个如下的6 x 6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子。
1 2 3 4 5 6
1 | | O | | | | |
2 | | | | O | | |
3 | | | | | | O |
4 | O | | | | | |
5 | | | O | | | |
6 | | | | | O | |
上面的布局可以用序列2 4 6 1 3 5 来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是跳棋放置的一个解.请编写一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。
解按字典顺序排列。请输出前3个解。最后一行是解的总个数。
INPUT FORMAT
一个数字N (6 <= N <= 13) 表示棋盘是N x N 大小的。
SAMPLE INPUT(checker.in)
6
OUTPUT FORMAT
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
SAMPLE OUTPUT(checker.out)
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
//eight queen
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int maze[50];
int vis[3][50];
int n,ans;
void dfs(int cul)
{
if(cul==n) { if(ans<3){for(int i=0;i<n;i++)cout<<maze[i]+1<<" "; cout<<endl;};
ans++;}
else
for(int i=0;i<n;i++)
{ //判断同一列i,主对角线y-x,副对角线y+x
if(!vis[0][i]&&!vis[1][cul+i]&&!vis[2][cul-i+n])
{ maze[cul]=i;
vis[0][i]=vis[1][cul+i]=vis[2][cul-i+n]=1;
dfs(cul+1);
vis[0][i]=vis[1][cul+i]=vis[2][cul-i+n]=0;
}
}
}
int main()
{
while(~scanf("%d",&n))
{ memset(vis,0,sizeof(vis));
ans=0;
dfs(0);
cout<<ans<<endl;
}
}