JAVA 集合类(java.util)源码阅读笔记------HashMap

一、继承关系

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable 

cloneable接口:重写OBject的clone方法。
Serializable接口:该类可序列化


二、成员变量

transient Node<K,V>[] table;//hash表的桶,用一个数组模拟,数组中每个元素都是一个指针,要么是单链表的头指针,要么是红黑树的根节点的指针
transient Set<Map.Entry<K,V>> entrySet; //用来实现遍历map的set,依次遍历table中所有桶中的node或者treeNode

transient int size;//该map中所有key-value对的个数,node的个数
transient int modCount;//修改次数,用来判断是否该map同时被多个线程操作,多线程环境下会抛出异常ConcurrentModificationException。

int threshold;//= table.size()* loadFactor,当table中实际占用量(不是table中占用的bin的个数,而是所有bin中的Nodede 总数)超过threshold时,就会进行resize()操作
//eg:table.size()=16,loadFactor=0.75,则当所有Bin中的node的个数超过12时会进行resize.
//table的容量,如果没有设置,则默认等于DEFAULT_INITIAL_CAPACITY=16,且必须为2的整数次幂。
final float loadFactor;//加载因子<=1,当table中实际占用的容量超过table.size()* loadFactor时,会进行table的扩容。默认加载因子为DEFAULT_LOAD_FACTOR=0.75

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //table默认初始容量 16,必须是2的整数次幂
static final int MAXIMUM_CAPACITY = 1 << 30;//table的最大容量
static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认加载因子,当table数组的容量超过table.length* loadFactor时,会调用resize()进行扩容。

static final int TREEIFY_THRESHOLD = 8;//当table[i]中的node个数超过8个,会将单链表table[i]转化成红黑树
static final int UNTREEIFY_THRESHOLD = 6;//当table[i]中红黑树的节点数少于6时,会退化成单链表
static final int MIN_TREEIFY_CAPACITY = 64;//当table的length大于64时,才会进行将某条node个数超过8的单链表转化成红黑树操作


三、方法说明

1、构造方法

只会设置加载因子和threshold,不会初始化table数组,数组的初始化在第一个add时调用resize()方法进行)

    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
		//设置的初始容量大于最大允许容量,则强制将initialCapacity = MAXIMUM_CAPACITY
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
		//调用tableSizeFor将threshold设置成大于initialCapacity的最小的2的整数次幂
        this.threshold = tableSizeFor(initialCapacity);
    }

    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
   }

2、重要方法

(1)hash:根据每个Node的key求hash

static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
h >>> 16:循环右移16位,不管符号,高位填0。h 为int型,四个字节,因此右移16位相当于把高两位字节移到最右边,舍弃原先低两位的字节。
 
通过hash值取对应的桶序号的方法:
h & (table.length -1)(h是调用hash()返回的值)相当于对table取余,保证所有的value的hash通过运算最终都落在0-table.size()-1之间。
它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

(2)tableSizeFor

功能:求大于cap的最小的2的整数次方的值,如cap=57,则返回64。保证table的size始终为2的整数次幂。

static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}


(3)resize
总结:
1)若table没有初始化,则采用默认的cap和加载因子(或者使用new map对象时传递进来的thr和f)进行初始化,为table申请空间
2)若table已经初始化,则将cap*2,thr*2。同时若cap已经超过了MAX_CAP,则直接将thr设置与cap相等。
3)将oldTable中的node都映射到newTable中。OldTable[i]中的node要么映射到newTable的i中,要么是i+oldcap中,由node.hash的第oldCap二进制中1所在位置j的那个位置bit值决定。

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
		//cap是数组的容量,thr是数组进行扩容的临界值
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
		//不是数组初始化
        if (oldCap > 0) {
			//当原table的size已经达到MAXIMUM_CAPACITY时,不对cap进行调整,只是将扩容临界值thr调整为与cap相同,让table空间得到100%的利用
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
			//否则就将cap和thr进行*2扩容
			//即使newCap<<1,它的值也始终小于Integer.MAX_VALUE,因为newCap是一个int型的整数
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
		//通过初始化传递了thr但是还没有进行table的初始化操作,这时将cap设置为oldCap的值
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
//初始化没有传递任何参数,cap和thr都采用默认值
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
		//如果上面没有设置newThr的值,这里统一进行处理.
		//主要有两个地方,第一个else if ((newCap = oldCap << 1),第二个else if (oldThr > 0);  
      if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
		//重新设置扩容后的临界值
        threshold = newThr;
		//利用上面计算的newCap重新为数组申请扩容后的空间
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
		//将原数组中内容转移到新数组中
        if (oldTab != null) {
			//原table中每个桶中的node逐个进行重新hash处理
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
					//将原table中每个链表的头指针置null
                    oldTab[j] = null;
					//如果oldTable[i]这条链表只有头指针,则将该node重新hash映射到新链表的某个位置上
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
					//如果该条链表是以红黑树的形式存储的,则调用红黑树的相关操作
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
					//对oldTable[i]链表中每个元素逐一处理
                    else { // preserve order
						//lo表示原链表中的node在新链表中的映射仍在同一位置table[i]
                        Node<K,V> loHead = null, loTail = null;
						//hi 表示原链表中的node在新链表中的映射在table[i+oldCap]。只有这两种位置
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //i=e.hash&(oldCap-1),那么e.hash&oldCap的值为e.hash在oldCap二进制形式中那个唯一(cap的值都为2的整数次幂,所以二进制形式中只有一个1)的1所在位置的值,要么为0,要么为1.。
							//因此,oldTable中的table[i]中的node,在新链表中的位置要么为i,要么为i+oldCap
							//之所以直接采用(e.hash & oldCap)是为了计算简便,避免每次都用e.hash&(newCap-1)
if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
						//在新table中映射位置为j的,相对顺序与oldTable中的相同
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
						//在新链表中映射位置为j+oldCap的
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }


(4)treeifyBin将某个hash桶的单链表转化成红黑树;untreeify将红黑树转化成单链表,在删除红黑树节点时会用到
基本步骤:
a、检查table.length是否>=64,如果不成立,则进行resize扩容,结束。
b、通过hash&(n-1)定位到table相应的bin中,检查bin中是否有Node,将单链表中的Node类型依次转化成treenode类型,并链接在一个双链表中
c、调用treeNode.treeify方法将该桶中的treeNode双链表转化成红黑树。

    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
		//若table的len没有达到最小树化值,则进行扩容处理
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
		//若该桶中有node,则将该桶中的单链表转化成红黑树
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
				//将每个node节点的值重新生成一个TreeNode节点
                TreeNode<K,V> p = replacementTreeNode(e, null);
				hd指向红黑树的根节点
                if (tl == null)
                    hd = p;
                else {
					//prev指向前一个节点,next指向后一个节点
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
			//上面的while循环将单链表转化成了双链表,节点类型由node编程了treeNode,hd指向头结点
            if ((tab[index] = hd) != null)
				//将该双链表构建成红黑树
                hd.treeify(tab);
        }
    }
	红黑树退化成单链表
	a、通过treeNode.next遍历红黑树,并将节点依次replacementNode成Node类型。
	b、将转化后的节点依次链接成一条单链表,返回头结点的指针
	 final Node<K,V> untreeify(HashMap<K,V> map) {
            Node<K,V> hd = null, tl = null;
            for (Node<K,V> q = this; q != null; q = q.next) {
				//将红黑树中的节点treeNode依次转化成node
                Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
			//返回单链表的头结点
            return hd;
        }


(5)remove

    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
removeNode:删除指定的key所对应的Node,matchValue为true表示只有key和value都对应才删除;movable表示在删除时不移动其他node

final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
		//只有在table不为空,table的length大于0,hash&(n-1)号桶中有值时才进行查找删除
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
			//如果头结点是查找的节点则令node指向它
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
				//如果这个桶中存储的是红黑树,则通过getTreeNode找到对应的node
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
					//如果是单链表,则依次查找node,知道找到,令node指向它
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
			//当Node==null表示没有找到该节点
			//只有当不要求匹配value或者要求匹配并且node的value也相等时,才进行删除
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
				//在红黑树中删除节点,把movable传递进去
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
				//头结点删除
                else if (node == p)
                    tab[index] = node.next;
				//p指向node的前一个节点
                else
                    p.next = node.next;
                ++modCount;
                --size;
				//回调接口,让LinkedHashMap执行对应的动作。在hashMap中没有动作:void afterNodeRemoval(Node<K,V> p) { }
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }


(6)containsValue:遍历整个map查找

treeNode也实现了Node的next功能,因此调用next可以遍历单链表和红黑树

    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }



(7)get:获取key对应的node

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
		//table不为空,table.length>0,hash对应的桶中有值
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
			//第一个节点就是要查找的节点
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
			//红黑树中查找
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
				//单链表遍历查找
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }


(8)put:map中插入
1)如果是首个插入map的节点,map进行初始化,在resize中进行
2)如果是put一个新节点,则插入结束后检查对应的bin是否需要转化成红黑树
3)插入或更新结束后,检查该table是否需要resize扩容(有可能插入到一个空桶中,导致table中桶的占用量超过了thr)

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
	final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
		//如果table为null或者table的长度为0,则调用resize()对table进行初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
		//如果hash&(n-1)号桶中没有node,则将该节点作为首节点放入该桶中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
			//p为桶的首节点,p为要找的节点,e指向它
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
			//在红黑树中查找,e指向查找到的treeNode
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
			//遍历桶中的节点
                for (int binCount = 0; ; ++binCount) {
				//当遍历该桶没有找到相同的key时,就新new一个Node,加入到桶中
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
						//同时检查该桶中Node的个数是否>=8,是则要将单链表转化成红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
					//否则在单链表中找到Node的key与给定key相等的节点,e指向它,p指向e的前一个节点
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
				//更新Node的value
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
				//回调接口,让LinkedHashMap执行对应的动作。在hashMap中没有动作:void
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
		//检查table的size有没有超过临界值,超过要进行resize扩容
        if (++size > threshold)
            resize();
		//回调接口,让LinkedHashMap执行对应的动作。在hashMap中没有动作:void
        afterNodeInsertion(evict);
        return null;
    }


(9)关于entrySet、keySet和values的实现
首先需要知道它们中都要一个迭代器,该iterator继承自同一个Abstract的HashIterator,在该抽象类中,nextNode方法实现了依次遍历table中所有bin中的Node或treeNode节点。后面的KeyIterator、ValueIterator和EntryIterator继承自HashIterator,实现Iterator接口,他们在next中调用nextNode方法实现依次迭代。

1)HashIterator

   abstract class HashIterator {
        Node<K,V> next;        // next entry to return
        Node<K,V> current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot

        HashIterator() {
            expectedModCount = modCount;
            Node<K,V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Node<K,V> nextNode() {
            Node<K,V>[] t;
            Node<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
				//next=e.next
				//如果next为空,则调整next指向下一个非空桶中的头结点,依次遍历所有的桶
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }


2)KeyIterator

//KeyIterator,每次获得下一个node的key
    final class KeyIterator extends HashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().key; }
    }


3)ValueIterator

//ValueIterator:每次获得下一个node的value
    final class ValueIterator extends HashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }


4)EntryIterator

//EntryIterator每次获得下一个node对象
    final class EntryIterator extends HashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }


entrySet、keySet

1)entrySet

方法:new了一个EntrySet对象

    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }
EntrySet类,继承自AbstractSet:Iterator方法new了一个EntryIterator用来遍历所有的node

final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
				//删除调用removeNode
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

2)keySet

方法:new了一个KeySet对象

public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }
KeySet类,继承自AbstractSet类:Iterator方法new了一个KeyIterator迭代器

final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
		//调用removeNode删除
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }




3)values:

方法:new了一个Values对象

public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }
Values类,继承自Collection,因为collections中允许重复,set中不允许。
iterator方法创建了ValueIterator。 

final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

四、内部类

(1)实现Map中的Entry接口的实现类,静态内部类
实际上是一个链表的节点的数据结构
static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;//该节点的hash值
        final K key;
        V value;
        Node<K,V> next;//指向下一个节点的指针

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }



五、总结

(1)table的cap一定为2的整数次幂。每次设置cap之前都调用tableForSize(指定的cap)来获取一个大于指定cap的最小的2的整数次幂,从而保证table.length一定为2的整数次幂,可以小于默认的初始容量16。
(2)根据node的key求hash。node.hash=key.hashcode^(key.hashcode>>>16),这样能保证结果的低16位都是key.hashcode的全部bit作用的结果。最后映射的Bin序号=hash&(n-1),结果一定映射在0-n-1上,原因:n是table.length,(1)中保证了n一定是2的整数次幂,那么n-1的二进制表示中,低位全为1,则与hash相与的结果是直接保留了hash中不大于n-1的所有bit,结果就与hash直接对n取模的效果一样,不过&速度更快。
(3)初始化。可以通过构造函数传递thr(这里指定的thr,虽然这个变量的含义是扩容的临界值,但是此处传递进去相当于设置的cap,具体原因在resize中)和f构造因子的值,但是在构造函数中并不对table初始化,也不会申请空间。table的初始化在put第一个节点时进行,实现在resize中。
(4)resize。实现两个3个功能。
初始化:若没有初始化,则对table进行初始化,若new hashmap对象时没有指定thr则采用默认值(cap=16,f=0.75)进行,若指定了thr,则cap=thr,thr=cap*f;
扩容:若已经初始化了,则对cap、thr进行*2扩容,扩容前检查cap是否已经达到最大值,达到则直接将thr=cap返回,否则都要进行*2扩容。然后给table重新new 一个newCap的空间。
转移node:oldtable中的node依次链接到newTable中。对于桶i,由于扩容是直接进行*2,则i中的node要么直接映射到newTable中的桶i,要么是桶(i+oldCap),原因:还是考虑newCap-1和oldCap-1的二进制形式,newCap-1比oldCap-1最高位多了一个1,低位完全相同,因此进行hash&(n-1)时相当于直接在i上+oldCap或者不变,这取决于hash的第newcap最高位所在是1还是0。resize中直接将hash&oldCap为1还是0,将oldTable[i]中的Node组成两个链表,分别链接进newTable中的i号桶和i+oldCap号桶中。
(5)关于map.put、map.get和map.remove
put:可能进行resize初始化,resize扩容,treeifyBin。
首先查看table是否初始化,没有则需要进行resize()初始化。
初始化后根据hash&(n-1)找到对应的Bin,
若bin中没有节点,则直接new一个node加入该bin。
bin中有节点,则查看第一个节点是否是要找的node,
如果是直接标记该节点指针,
否则,区分该桶中是单链表node还是treenode,
treenode则调用红黑树的查找方法来找到node,标记指针,
Node则查找这条单链表上是否有与key相等的Node,
没有则直接加入链表尾部,插入后检查该bin中是否需要treeifyBin(当单链表个数>=8则转化成红黑树);
有则找到该node,标记指针;
标记指针不为空,则表示是更新节点,直接替换掉node的value。
还要检查该table此时是否需要扩容,因为插入一个新节点可能导致table中桶占用的个数增大(该node映射到一个新Bin中),导致需要扩容。
get:
前提:table!=null&&table.length>0&&table[hash&(n-1)]!=null
根据hash映射到对应的桶,如果bin的头结点是要找的指针,则直接返回头结点。
否则区分是treeNode还是node,
treenode则调用红黑树的查找;
node则直接遍历单链表查找;
返回查找到的node
remove:
前提:table!=null&&table.length>0&&table[hash&(n-1)]!=null
根据hash映射到对应的桶,如果bin的头结点是要找的指针,则直接返回头结点。
否则区分是treeNode还是node,
treenode则调用红黑树的查找,标记查找到的node;
node则直接遍历单链表查找,标记查找到的node;
若查找到的Node!=null,则区分treeNode和node分别进行删除。(treenode的删除中可能会调用untreeify退化成单链表)
(6)entrySet、keySet和values方法
分别返回一个EntrySet、KeySet和Values类型的对象,对象的类型分别继承自Set、Set和collection,都包含一个Iterator方法,该方法内部分别返回一个EntryIterator、KeyIterator和ValueIterator类型的迭代器,对象的类型都继承自HashIterator抽象类,EntryIterator、KeyIterator和ValueIterator内部的next方法都是调用父类HashIterator的nextNode方法来实现对table中所有bin中Node的依次遍历。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值