畅通工程再续
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 11884 Accepted Submission(s): 3643
Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
Sample Output
1414.2 oh!
Author
8600
kruskal裸题,没啥好说的,畅通工程系列还差一题全部做完- -。简单代码贴一下,可以当做模板使用~
kruskal裸题,没啥好说的,畅通工程系列还差一题全部做完- -。简单代码贴一下,可以当做模板使用~
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int x;
int y;
double w;
}edge[100005];
int n;
int pre[105];
double l;
void init()
{
int i;
for(i=0;i<=n;i++)
{
pre[i]=i;
}
}
int find(int x)
{
if(x==pre[x])
return pre[x];
pre[x]=find(pre[x]);
return pre[x];
}
void join(int x ,int y)
{
int fx=find(x);
int fy=find(y);
if(fx==fy)
return ;
if(fx!=fy)
pre[fx]=fy;
}
bool cmp(node a,node b)
{
return a.w<b.w;
}
struct point{
int x;
int y;
}p[105];
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n;
int i,j;
for(i=1;i<=n;i++)
{
cin>>p[i].x>>p[i].y;
}
int dis;
int k=0;
for(i=1;i<=n;i++)
{
for(j=i;j<=n;j++)
{
dis=(p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y);
if(dis<100||dis>1000000)
continue;
else//符合条件则把两点及其权值记录~并且统计最后一共有多少条边~
{
edge[k].x=i;
edge[k].y=j;
edge[k].w=sqrt(dis*1.0);
k++;
}
}
}
init();
l=0;
int sum=0;
sort(edge,edge+k,cmp);
for(i=0;i<k;i++)
{
int x=find(edge[i].x);
int y=find(edge[i].y);
if(x!=y)
{
join(x,y);
l+=edge[i].w;
sum++;
}
}
if(sum==n-1)
{
l*=100;
printf("%.1lf\n",l);
}
else
{
printf("oh!\n");
}
}
return 0;
}