算法导论第2版-附录课后习题答案

算法导论-附录A.1-3

0 < ∣ x ∣ < 1 0<|x|<1 0<x<1,证明 ∑ k = 0 ∞ k 2 x k = x ( 1 + x ) / ( 1 − x ) 3 \displaystyle \sum_{k=0}^\infty k^2x^k=x(1+x)/(1-x)^3 k=0k2xk=x(1+x)/(1x)3

等比数列求和公式: ∑ k = 0 n − 1 x k = 1 − x n 1 − x \displaystyle \sum_{k=0}^{n-1} x^k=\frac{1-x^n}{1-x} k=0n1xk=1x1xn

由于 0 < ∣ x ∣ < 1 0<|x|<1 0<x<1,取极限可得, ∑ k = 0 ∞ x k = 1 ( 1 − x ) \displaystyle \sum_{k=0}^\infty x^k=\frac{1}{(1-x)} k=0xk=(1x)1

上述极限等式两边同时对x求导,可得 ( ∑ k = 0 ∞ x k ) ′ = ∑ k = 0 ∞ k x k − 1 = 1 x ∑ k = 0 ∞ k x k (\displaystyle \sum_{k=0}^\infty x^k)'=\displaystyle \sum_{k=0}^\infty kx^{k-1}=\frac{1}{x}\displaystyle \sum_{k=0}^\infty kx^k (k=0xk)=k=0kxk1=x1k=0kxk,且 ( 1 1 − x ) ′ = 1 ( 1 − x ) 2 (\displaystyle \frac{1}{1-x})'=\displaystyle \frac{1}{(1-x)^2} (1x1)=(1x)21

则有, ∑ k = 0 ∞ k x k = x ( 1 − x ) 2 \displaystyle \sum_{k=0}^\infty kx^k=\frac{x}{(1-x)^2} k=0kxk=(1x)2x

同样的,等式 ∑ k = 0 ∞ k x k = x ( 1 − x ) 2 \displaystyle \sum_{k=0}^\infty kx^k=\frac{x}{(1-x)^2} k=0kxk=(1x)2x两边同时x求导,可得到

( ∑ k = 0 ∞ k x k ) ′ = ∑ k = 0 ∞ k 2 x k − 1 = 1 x ∑ k = 0 ∞ k 2 x k (\displaystyle \sum_{k=0}^\infty kx^k)'=\displaystyle \sum_{k=0}^\infty k^2x^{k-1}=\frac{1}{x}\displaystyle \sum_{k=0}^\infty k^2x^k (k=0kxk)=k=0k2xk1=x1k=0k2xk,且 ( x ( 1 − x ) 2 ) ′ = 1 ⋅ ( 1 − x ) 2 − x ⋅ 2 ( 1 − x ) ⋅ ( − 1 ) ( 1 − x ) 4 = ( 1 − x ) 2 + 2 x ( 1 − x ) ( 1 − x ) 4 = 1 + x ( 1 − x ) 3 (\displaystyle \frac{x}{(1-x)^2})'=\displaystyle \frac{1\cdot (1-x)^2-x\cdot 2(1-x)\cdot(-1)}{(1-x)^4}=\frac{(1-x)^2+2x(1-x)}{(1-x)^4}=\frac{1+x}{(1-x)^3} ((1x)2x)=(1x)41(1x)2x2(1x)(1)=(1x)4(1x)2+2x(1x)=(1x)31+x

则有, ∑ k = 0 ∞ k 2 x k = x ( 1 + x ) / ( 1 − x ) 3 \displaystyle \sum_{k=0}^\infty k^2x^k=x(1+x)/(1-x)^3 k=0k2xk=x(1+x)/(1x)3,证毕。

算法导论附录A.1-4

证明 ∑ k = 0 ∞ ( k − 1 ) / 2 k = 0 \displaystyle \sum_{k=0}^\infty (k-1)/2^k=0 k=0(k1)/2k=0

由于 0 < ∣ x ∣ < 1 0<|x|<1 0<x<1 ∑ k = 0 ∞ x k = 1 ( 1 − x ) \displaystyle \sum_{k=0}^\infty x^k=\frac{1}{(1-x)} k=0xk=(1x)1 ∑ k = 0 ∞ k x k = x ( 1 − x ) 2 \displaystyle \sum_{k=0}^\infty kx^k=\frac{x}{(1-x)^2} k=0kxk=(1x)2x

则有, ∑ k = 0 ∞ ( k − 1 ) / 2 k = ∑ k = 0 ∞ k ⋅ ( 1 2 ) k − ∑ k = 0 ∞ ( 1 2 ) k = 1 2 ( 1 − 1 2 ) 2 − 1 1 − 1 2 = 2 − 2 = 0 \displaystyle \sum_{k=0}^\infty (k-1)/2^k=\displaystyle \sum_{k=0}^\infty k\cdot (\frac{1}{2})^k-\displaystyle \sum_{k=0}^\infty(\frac{1}{2})^k=\frac{\frac{1}{2}}{(1-\frac{1}{2})^2}-\frac{1}{1-\frac{1}{2}}=2-2=0 k=0(k1)/2k=k=0k(21)kk=0(21)k=(121)2211211=22=0

算法导论附录A.1-7

∏ k = 1 n 2 ⋅ 4 k \displaystyle\prod_{k=1}^n 2\cdot 4^k k=1n24k的值。

根据公式 lg ⁡ ( ∏ k = 1 n a k ) = ∑ k = 1 n lg ⁡ a k \lg(\displaystyle\prod_{k=1}^n a_k)=\displaystyle \sum_{k=1}^n\lg a_k lg(k=1nak)=k=1nlgak,可以进行求解。

lg ⁡ ( ∏ k = 1 n 2 ⋅ 4 k ) = ∑ k = 1 n lg ⁡ ( 2 ⋅ 4 k ) = ∑ k = 1 n ( 1 + 2 k ) = n 2 + 2 n \lg(\displaystyle\prod_{k=1}^n 2\cdot 4^k)=\displaystyle \sum_{k=1}^n \lg(2\cdot 4^k)=\displaystyle \sum_{k=1}^n(1+2k)=n^2+2n lg(k=1n24k)=k=1nlg(24k)=k=1n(1+2k)=n2+2n

则, ∏ k = 1 n 2 ⋅ 4 k = 2 n 2 + 2 n \displaystyle\prod_{k=1}^n 2\cdot 4^k=2^{n^2+2n} k=1n24k=2n2+2n

算法导论附录A.1-8

∏ k = 2 n ( 1 − 1 / k 2 ) \displaystyle\prod_{k=2}^n (1-1/k^2) k=2n(11/k2)的值。

∏ k = 2 n ( 1 − 1 / k 2 ) = ∏ k = 2 n k 2 − 1 k 2 = ∏ k = 2 n ( k − 1 k ⋅ k + 1 k ) \displaystyle\prod_{k=2}^n (1-1/k^2)=\displaystyle\prod_{k=2}^n \frac{k^2-1}{k^2}=\displaystyle \prod_{k=2}^n (\frac{k-1}{k}\cdot\frac{k+1}{k}) k=2n(11/k2)=k=2nk2k21=k=2n(kk1kk+1)

= 1 2 3 2 ⋅ 2 3 4 3 ⋅ 3 4 5 4 . . . n − 2 n − 1 n n − 1 ⋅ n − 1 n n + 1 n =\frac{1}{2}\frac{3}{2} \cdot \frac{2}{3}\frac{4}{3} \cdot\frac{3}{4}\frac{5}{4} ... \frac{n-2}{n-1}\frac{n}{n-1} \cdot\frac{n-1}{n}\frac{n+1}{n} =212332344345...n1n2n1nnn1nn+1

= 1 2 ⋅ n + 1 n = n + 1 2 n =\frac{1}{2}\cdot\frac{n+1}{n}=\frac{n+1}{2n} =21nn+1=2nn+1

算法导论附录C.1-5

0 < k ≤ n 0 < k \leq n 0<kn,证明恒等式 ( n k ) = n k ( n − 1 k − 1 ) \tbinom{n}{k}=\frac{n}{k}\tbinom{n-1}{k-1} (kn)=kn(k1n1)

( n k ) = n ! k ! ⋅ ( n − k ) ! = n ⋅ ( n − 1 ) ! k ⋅ ( k − 1 ) ! ⋅ ( n − 1 − k + 1 ) ! \tbinom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n\cdot(n-1)!}{k\cdot (k-1)!\cdot (n-1-k+1)!} (kn)=k!(nk)!n!=k(k1)!(n1k+1)!n(n1)!

= n k ⋅ ( n − 1 ) ! ( k − 1 ) ! ⋅ [ n − 1 − ( k − 1 ) ] ! =\frac{n}{k}\cdot\frac {(n-1)!}{(k-1)!\cdot [n-1-(k-1)]!} =kn(k1)![n1(k1)]!(n1)!

n k ( n − 1 k − 1 ) \frac{n}{k}\tbinom{n-1}{k-1} kn(k1n1)

算法导论附录C.1-6

0 < k ≤ n 0 < k \leq n 0<kn,证明恒等式 ( n k ) = n n − k ( n − 1 k ) \tbinom{n}{k}=\frac{n}{n-k}\tbinom{n-1}{k} (kn)=nkn(kn1)

( n k ) = n ! k ! ⋅ ( n − k ) ! = n ⋅ ( n − 1 ) ! k ! ⋅ ( n − k ) ⋅ ( n − 1 − k ) ! \tbinom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n\cdot(n-1)!}{k!\cdot (n-k)\cdot (n-1-k)!} (kn)=k!(nk)!n!=k!(nk)(n1k)!n(n1)!

= n n − k ⋅ ( n − 1 ) ! k ! ⋅ ( n − 1 − k ) ! =\frac{n}{n-k}\cdot\frac {(n-1)!}{k!\cdot (n-1-k)!} =nknk!(n1k)!(n1)!

n n − k ⋅ ( n − 1 k ) \frac{n}{n-k}\cdot\tbinom{n-1}{k} nkn(kn1)

算法导论附录C.1-7

为了从n中选择k个对象,可以使其中一个对象与众不同,并考虑这个对象是否被选中。利用这个方法证明 ( n k ) = ( n − 1 k ) + ( n − 1 k − 1 ) \tbinom{n}{k}=\tbinom{n-1}{k}+\tbinom{n-1}{k-1} (kn)=(kn1)+(k1n1)

证明:按照两种方案来选择。

第一种,不选择与众不同的对象时,那么从n-1中选择k个,结果为 ( n − 1 k ) \tbinom{n-1}{k} (kn1)

第二种,选择与众不同的对象时,那么从n-1中选择k-1个,结果为 ( n − 1 k − 1 ) \tbinom{n-1}{k-1} (k1n1)

证毕。

算法导论附录C.1-9

证明 ∑ i = 1 n i = ( n + 1 2 ) \displaystyle\sum_{i=1}^n i=\tbinom{n+1}{2} i=1ni=(2n+1)

∑ i = 1 n i = n ( n + 1 ) 2 = ( n + 1 ) ! 2 ⋅ ( n − 1 ) ! \displaystyle\sum_{i=1}^n i=\frac{n(n+1)}{2}=\frac{(n+1)!}{2\cdot(n-1)!} i=1ni=2n(n+1)=2(n1)!(n+1)!

= ( n + 1 ) ! 2 ! ⋅ ( n + 1 − 2 ) ! =\displaystyle \frac{(n+1)!}{2!\cdot (n+1-2)!} =2!(n+12)!(n+1)!

= ( n + 1 2 ) =\tbinom{n+1}{2} =(2n+1)

二项系数&算法导论附录C.1-15

二项展开式: ( x + y ) n = ∑ k = 0 n ( n k ) x k y n − k (x+y)^n=\displaystyle \sum_{k=0}^n\tbinom{n}{k}x^ky^{n-k} (x+y)n=k=0n(kn)xkynk

x = y = 1 x=y=1 x=y=1时, 2 n = ∑ k = 0 n ( n k ) 2^n=\displaystyle \sum_{k=0}^n\tbinom{n}{k} 2n=k=0n(kn)

其中, ( n k ) = n ! k ! ⋅ ( n − k ) ! \tbinom{n}{k}=\frac{n!}{k!\cdot(n-k)!} (kn)=k!(nk)!n!读作n个选择k个的组合个数。

( n k ) = ( n − 1 k ) + ( n − 1 k − 1 ) \tbinom{n}{k}=\tbinom{n-1}{k}+\tbinom{n-1}{k-1} (kn)=(kn1)+(k1n1)

证明对任意整数 n ≥ 0 n\geq 0 n0 ∑ k = 0 n ( n k ) k = n 2 n − 1 \displaystyle \sum_{k=0}^n\tbinom{n}{k}k=n2^{n-1} k=0n(kn)k=n2n1

证明: ∑ k = 0 n ( n k ) k = ∑ k = 0 n n ! k ! ⋅ ( n − k ) ! k \displaystyle \sum_{k=0}^n\tbinom{n}{k}k=\displaystyle \sum_{k=0}^n\frac{n!}{k!\cdot(n-k)!}k k=0n(kn)k=k=0nk!(nk)!n!k

= ∑ k = 0 n n ⋅ ( n − 1 ) ! ( k − 1 ) ! ⋅ ( n − 1 − ( k − 1 ) ) ! =\displaystyle \sum_{k=0}^n\frac{n\cdot(n-1)!}{(k-1)!\cdot(n-1-(k-1))!} =k=0n(k1)!(n1(k1))!n(n1)!

= ∑ k = 0 n n ⋅ ( n − 1 k − 1 ) =\displaystyle \sum_{k=0}^nn\cdot\tbinom{n-1}{k-1} =k=0nn(k1n1)

= ∑ k = 0 n n ⋅ [ ( n k ) − ( n − 1 k ) ] =\displaystyle \sum_{k=0}^nn\cdot [ \tbinom{n}{k}-\tbinom{n-1}{k}] =k=0nn[(kn)(kn1)]

= n ⋅ [ 2 n − ∑ k = 0 n − 1 ( n − 1 k ) + 0 ] =n\cdot [ 2^n - \displaystyle \sum_{k=0}^{n-1} \tbinom{n-1}{k}+0] =n[2nk=0n1(kn1)+0]

= n ⋅ [ 2 n − 2 n − 1 ] =n\cdot [ 2^n - 2^{n-1}] =n[2n2n1]

= n 2 n − 1 =n2^{n-1} =n2n1

算法导论附录C.3-6-马尔可夫不等式

令X为非负随机变量,并假设E[X]有良定义。对任意t>0,证明马尔可夫不等式(Markov’s inequality): Pr ⁡ { X ≥ t } ≤ E [ X ] / t \Pr\{X\geq t\} \leq E[X]/t Pr{Xt}E[X]/t

E [ X ] = ∑ x Pr ⁡ { X = x } ⋅ x = ∑ x = 0 ∞ x Pr ⁡ { X = x } E[X]=\displaystyle\sum_x\Pr\{X=x\}\cdot x=\displaystyle \sum_{x=0}^\infty x\Pr\{X=x\} E[X]=xPr{X=x}x=x=0xPr{X=x}

≥ ∑ x = t ∞ x ⋅ Pr ⁡ { X = x } \geq \displaystyle\sum_{x=t}^\infty x\cdot \Pr\{X=x\} x=txPr{X=x}

≥ ∑ x = t ∞ t ⋅ Pr ⁡ { X = x } \geq \displaystyle\sum_{x=t}^\infty t \cdot \Pr\{X=x\} x=ttPr{X=x}

= t ⋅ ∑ x = t ∞ Pr ⁡ { X = x } =t \cdot \displaystyle\sum_{x=t}^\infty \Pr\{X=x\} =tx=tPr{X=x}

= t ⋅ Pr ⁡ { X ≥ t } =t\cdot \Pr\{X\geq t\} =tPr{Xt}

则, Pr ⁡ { X ≥ t } ≤ E [ X ] / t \Pr\{X\geq t\} \leq E[X]/t Pr{Xt}E[X]/t

算法导论附录C.4-1

对几何分布,验证概率公理的公理2。

lim ⁡ n → ∞ ∑ k = 1 n Pr ⁡ { X = k } = lim ⁡ n → ∞ ∑ k = 1 n p q k − 1 \lim\limits_{n \rightarrow \infty} \displaystyle \sum_{k=1}^n \Pr\{X=k\}=\lim\limits_{n \rightarrow \infty} \displaystyle \sum_{k=1}^n pq^{k-1} nlimk=1nPr{X=k}=nlimk=1npqk1

= lim ⁡ n → ∞ p ⋅ 1 ⋅ ( 1 − q n ) 1 − q =\lim\limits_{n \rightarrow \infty} p \cdot \displaystyle \frac{1\cdot (1-q^n)}{1-q} =nlimp1q1(1qn)

= p 1 − q = 1 =\displaystyle\frac{p}{1-q}=1 =1qp=1

算法导论附录C.4-5

证明n次伯努利试验中没有一次成功的概率约等于1/e,每次试验成功的概率是p=1/n。证明只有一次成功的概率也约等于1/e。

先验知识: lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x\rightarrow\infty} (1+\frac{1}{x})^x=e xlim(1+x1)x=e

lim ⁡ n → ∞ ( n 0 ) ⋅ ( 1 n ) 0 ⋅ ( 1 − 1 n ) n = lim ⁡ n → ∞ [ ( 1 + 1 − n ) − n ] − 1 = 1 / e \lim\limits_{n\rightarrow\infty}\displaystyle\tbinom{n}{0}\cdot(\frac{1}{n})^0\cdot (1-\frac{1}{n})^n=\lim\limits_{n\rightarrow\infty}[(1+\frac{1}{-n})^{-n}]^{-1}=1/e nlim(0n)(n1)0(1n1)n=nlim[(1+n1)n]1=1/e

lim ⁡ n → ∞ ( n 1 ) ⋅ ( 1 n ) 1 ⋅ ( 1 − 1 n ) n − 1 = lim ⁡ n → ∞ n ⋅ 1 n ⋅ ( 1 1 − 1 n ) ⋅ [ ( 1 + 1 − n ) − n ] − 1 = 1 / e \lim\limits_{n\rightarrow\infty}\displaystyle\tbinom{n}{1}\cdot(\frac{1}{n})^1\cdot (1-\frac{1}{n})^{n-1}=\lim\limits_{n\rightarrow\infty}n\cdot\frac{1}{n}\cdot(\frac{1}{1-\frac{1}{n}})\cdot[(1+\frac{1}{-n})^{-n}]^{-1}=1/e nlim(1n)(n1)1(1n1)n1=nlimnn1(1n11)[(1+n1)n]1=1/e

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值