欧拉回路:
判断图的联通
无向图存在欧拉回路的充要条件:
一个无向图存在欧拉回路,当且仅当该图所有的顶点度数都是偶数且该图是连通图。
一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图,或者一个顶点的
度数为1,另一个度数为-1,其他顶点的度数为0.
混合图存在欧拉回路条件:
我们使用网络流的模型。现任意构造一个G'。用Ii表示第i个点的入度,Oi表示第i个点的出度。
如果存在一个点k,|Ok-Ik|mod 2=1,那么G不存在欧拉回路。
接下来则对于所有Ii>Oi的点从源点连到i一条容量为(Ii-Oi)/2的边,
对于所有Ii<Oi的点从i连到汇点一条容量为(Oi-Ii)/2的边。
如果对于节点U和V,无向边(U,V)∈E,
那么U和V之间互相建立容量为无限大的边。
如果此网络的最大流等于∑|Ii-Oi|/2,那么就存在欧拉回路。
欧拉回路
hdu1878
hdu3018
hdu1116
poj1041
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,
是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若 ∈E(G),
则u在线性序列中出现在v之前。
拓扑排序
什么是拓扑序列
通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,
由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。离散数学中关于偏序和全序的定义:
若集合X上的关系是R,且R是自反的、反对称的和传递的,则称R是集合X上的偏序关系。
设R是集合X上的偏序(Partial Order),如果对每个x,y属于X必有xRy 或 yRx,则称R是集合X上的全序关系。
比较简单的理解:偏序是指集合中只有部分成员可以比较,全序是指集合中所有的成员之间均可以比较。
注意:
①若将图中顶点按拓扑次序排成一行,则图中所有的有向边均是从左指向右的。
②若图中存在有向环,则不可能使顶点满足拓扑次序。
③一个DAG的拓扑序列通常表示某种方案切实可行。
一般应用
拓扑排序常用来确定一个依赖关系集中,事物发生的顺序。例如,在日常工作中,
可能会将项目拆分成A、B、C、D四个子部分来完成,但A依赖于B和D,C依赖于D。为了计算这个项目进行的顺序,
可对这个关系集进行拓扑排序,得出一个线性的序列,则排在前面的任务就是需要先完成的任务。
实现的基本方法
拓扑排序方法如下:
(1)从有向图中选择一个没有前驱(即入度为0)的顶点并且输出它.
(2)从网中删去该顶点,并且删去从该顶点发出的全部有向边.
(3)重复上述两步,直到剩余的网中不再存在没有前趋的顶点为止.
拓扑排序
hdu3342
hdu1285
hdu1811
hdu2094