hdu(4497) GCD and LCM

题目大意:
  求gcd(x,y,z)=G且lcm(x,y,z)=L的方法数。
题目分析:
  起初这道题一点想法都没有。。看了题解才有些想法。
  首先如果L不能被G整除的话,这样的组合一定不存在。
  当这样的组合存在的时候,所求与  求gcd(x,y,z)=1且lcm(x,y,z)=L/G的方法数是等价的。
  那么:令temp=L/G。
  对temp进行素数分解:temp=p1^t1 * p2^t2 * ……* pn^tn。
  因为temp是这三个数的倍数,因而x,y,z的组成形式为:
  x=p1^i1 * p2^i2 *…… * pn^in;
  y=p1^j1 * p2^j2 *…… * pn^jn;
  z=p1^k1 * p2^k2 * …… * pn^kn;
  对于某一个素因子p:

          因为要满足x,y,z的最大公约数为1,即三个数没有共同的素因子,所以min(i,j,k)=0。
          又因为要满足x,y,z的最小公倍数为temp,即p^t必然要至少存在一个,所以max(i,j,k)=t。
          换言之:至少要有一个p^t,以满足lcm的要求;至多有两个包含p,以满足gcd的要求。
          因而基本的组合方式为(0,p^t,p^k),k=0-->t。
          而因为(1,2,3)和(2,1,3)是不同的方法,所有满足要求的方法中,除了(0,0,t)和(0,t,t)
                     各有3种排列之外,其余都有6种排列。
          对于某一个素因子p总的方法数为6*(t-1)+2*3=6*t。
  在根据组合排列的知识,素数与素数之间是分步的关系,因而总的方法数为:6*(t1+t2+……+tn)

 

 

 

 

 

#include"stdio.h"
#include"string.h"
int map[6000];
int n,m,sum;
int main()
{
 int i,j,k,sum;
 scanf("%d",&k);
 while(k--)
 {
  scanf("%d%d",&n,&m);
  if(m%n)
  {
   printf("0\n");
   continue;
  }
  memset(map,0,sizeof(map));
  m=m/n;j=0;
  for(i=2;i*i<=m;i++)
  {
   if(m%i==0)
   {
    while(m%i==0)
    {
     map[j]++;
     m=m/i;
    }
    j++;
   }
  }
  if(m!=1)
   map[j++]=1;
  sum=1;
  for(i=0;i<j;i++)
   sum=sum*6*map[i];
  printf("%d\n",sum);
 }
 return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值