问题描述:
/**
* Divide two integers without using multiplication, division and mod operator.
*/
让两个数相除,不使用乘法,除法,和取余的方法。
比如这样两个数:35和4.我们知道35除以4等于8余3。 一个思路就是辗转相减法,即每次让35减4,知道小于0,期间有一个count来统计减掉了多少次4,也就是35有多少倍的4,这样也就求出了最终的结果。代码如下:
public static int divide(int dividend, int divisor) {
if (dividend == 0)
return 0;
ArrayList<Integer> list = new ArrayList<Integer>();
BigDecimal d0 = new BigDecimal(dividend);
d0 = d0.abs();//考虑到有负数,所以取绝对值
BigDecimal d1;
BigDecimal d3 = new BigDecimal(divisor);
d3 = d3.abs();
int count = 0;
boolean start = true;
while (d0.compareTo(d3) == 1 || d0.compareTo(d3) == 0) {//compareTo,1表示大于,0表示等于
d1 = new BigDecimal(divisor);
d1 = d1.abs();
start = true;
while (d0.compareTo(d1) == 1 || d0.compareTo(d1) == 0) {
if (start) {
list.add(1);
start = false;
} else {
int last = list.get(list.size() - 1);
list.add(last + last);
}
d0 = d0.subtract(d1);//d0=d0-d1
d1 = d1.add(d1);
}
}
for (int e : list) {
count += e;
}
return (dividend < 0 && divisor < 0) || (dividend > 0 && divisor > 0) ? count: -count;
}
但是上面代码中的做法并不和前面写的一样,代码中,并不是每次减去4的,而是每减一次,除数增加一倍d1 = d1.add(d1);
这样可以提高效率,第一次判断有几倍的4,第二次判断有几倍的8.依次类推,然后把这些统计出来的倍数存到list里面。再把list每一个值加起来就是最终的结果。
至于为什么要两个while循环,是因为,当除数增加很多倍以至于大于被除数的时候,不能再准确还有几个除数可以相减,就要跳出里面的while循环,重新把除数置为一倍的除数即它本身即可。