POJ 1273 Drainage Ditches(最大流模板)

这篇博客介绍了POJ 1273题目的解题思路,该题目涉及网络流与图论。内容包括题目的核心——从起点到终点寻找水管的最大流量,并强调了在解决此类问题时应注意重边的情况。博主提供了简洁的代码实现,使用了两个数组pre和cap来分别记录前驱节点和残留网络。
摘要由CSDN通过智能技术生成

题目链接:http://poj.org/problem?id=1273

题意:一些水管连接着十字路口,求从起点到终点的最大流量。

题解:基础模板题。注意重边。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int MAX=200+10;
const int INF=0x3f3f3f3f;
int n,m;
int cap[MAX][MAX],flow[MAX][MAX];
int pre[MAX],res[MAX];//res[]残量,pre[]前驱
void Edmonds_Karp()
{
	int sum=0;
	queue<int> que;
	while(1)
	{
		memset(res,0,sizeof(res));
		res[0]=INF;
		que.push(0);
		while(!que.empty())
		{
			int u=que.front();
			que.pop();
			for(int v=0;v<n;v++)
			{
				if(!res[v]&&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值