LeetCode 4. Median of Two Sorted Arrays

本文介绍了一种在O(log(min(m+n)))时间复杂度内找到两个有序数组合并后中位数的方法。通过巧妙地利用二分查找,文章详细解释了如何确定分割位置并确保两边元素数量相等且左边的最大值小于等于右边的最小值。
摘要由CSDN通过智能技术生成

题目:https://leetcode.com/problems/median-of-two-sorted-arrays/#/description

题意:给出两个有序的数组,长度分别为n和m,然后找出两个有序的数组合并之后的中位数。要求求解的复杂度(不包括输入)在O(log (m+n))以内。

题解:

1. 如果O(M+N)的话,可以直接将两个数组合并,求出中间位置的数即可。

2. 参考解答:https://discuss.leetcode.com/topic/4996/share-my-o-log-min-m-n-solution-with-explanation(非常详细)

首先假设两个数组中分割中位数两部分的位置为 i 和 j ,可以得到 i 和 j 满足的两个条件:

(1) i + j == m - i + n - j (or: m - i + n - j + 1)
    if n >= m, we just need to set: i = 0 ~ m, j = (m + n + 1)/2 - i
(2) B[j-1] <= A[i] and A[i-1] <= B[j]

那么可以扫描一个数组,然后从另一个数组中找出满足长度条件(1)的位置,然后判断大小关系。如果满足则得出解。但是复杂度仍然达不到要求。

 其实从中可以发现一种单调性:假设发现当前位置 i,j满足条件(1),但是 A[i]<B[j-1] ,那么i的正确位置必然应该在当前位置的右边,由此我们得到的一种可以二分的性质。

有几个注意点:

(1) 边界问题:i=0,j=0,i=n,j=m 。

(2)有某一个数组为空的时候。


代码:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m=nums1.size(),n=nums2.size();

        if(m>n) return findMedianSortedArrays(nums2,nums1);

        int half_len=(m+n+1)/2;
        double ans;
        int ileft=0,iright=m;
        int i,j;
        while(ileft<=iright)
        {
            i=(ileft+iright)/2;
            j=(half_len-i);
            if(i>0&&j<n&&nums1[i-1]>nums2[j])
                iright=i-1;
            else if(i<m&&j>0&&nums1[i]<nums2[j-1])
                ileft=i+1;
            else
            {
                double mid_left,mid_right;

                if(i==0) mid_left=nums2[j-1];
                else if(j==0) mid_left=nums1[i-1];
                else mid_left=max(nums1[i-1],nums2[j-1]);

                if(i==m) mid_right=nums2[j];
                else if(j==n) mid_right=nums1[i];
                else mid_right=min(nums1[i],nums2[j]);

                if((m+n)%2) return mid_left;
                return (mid_left+mid_right)/2.0;
            }
        }
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值