http://poj.org/problem?id=2528
题解:
将所有海报的端点瓷砖排序,把每个海报的端点瓷砖都看做一个单位区间,两个相邻的端点瓷砖之间的部分是一个单位区间
这样最多会有20000 + 19999个单位区间
关键:插入数据的顺序------从上往下依次插入每张海报,这样后插入的海报不可能覆盖先插入的海报,因此插入一张海报时,如果发现海报对应区间有一部分露出来,就说明该海报部分可见。
时间复杂度: nlogn(n为海报数目)
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;
int n;
struct CPost {
int L,R;
};
CPost posters[10100];
int x[20200];//海报的端点瓷砖编号
int hash[10000010]; //hash[i]表示瓷砖i所处的离散化后的区间编号
struct CNode {
int L,R;
bool bCovered; //区间[L,R]是否已经被完全覆盖
CNode * pLeft, * pRight;
};
CNode Tree[1000000];
int nNodeCount= 0;
int Mid( CNode * pRoot) {
return (pRoot->L + pRoot->R)/2;
}
void BuildTree( CNode * pRoot, int L, int R) {
pRoot->L = L;
pRoot->R = R;
pRoot->bCovered = false;
if( L == R )
return;
nNodeCount ++;
pRoot->pLeft = Tree + nNodeCount;
nNodeCount ++;
pRoot->pRight = Tree + nNodeCount;
BuildTree( pRoot->pLeft,L,(L+R)/2);
BuildTree( pRoot->pRight,(L+R)/2 + 1,R);
}
bool Post( CNode *pRoot, int L, int R) {
//插入一张正好覆盖区间[L,R]的海报,返回true则说明区间[L,R]是部分或全部可见的
if( pRoot->bCovered ) return false;
if( pRoot->L == L && pRoot->R == R) {
pRoot->bCovered = true;
return true;
}
bool bResult ;
if( R <= Mid(pRoot) )
bResult = Post( pRoot->pLeft,L,R);
else if( L >= Mid(pRoot) + 1)
bResult = Post( pRoot->pRight,L,R);
else {
bool b1 = Post(pRoot->pLeft ,L,Mid(pRoot));
bool b2 = Post( pRoot->pRight,Mid(pRoot) + 1,R);
bResult = b1 || b2;
}
//要更新根节点的覆盖情况
if( pRoot->pLeft->bCovered && pRoot->pRight->bCovered )
pRoot->bCovered = true;
return bResult;
}
int main() {
int t;
int i,j,k;
scanf("%d",&t);
int nCaseNo = 0;
while(t--) {
nCaseNo ++;
scanf("%d",&n);
int nCount = 0;
for( i = 0; i < n; i ++ ) {
scanf("%d %d", & posters[i].L,
& posters[i].R );
x[nCount++] = posters[i].L;
x[nCount++] = posters[i].R;
}
sort(x,x+nCount);
//<a target=_blank href="http://www.cnblogs.com/heyonggang/archive/2013/08/07/3243477.html">http://www.cnblogs.com/heyonggang/archive/2013/08/07/3243477.html</a>
nCount = unique(x,x+nCount) -x; //去掉重复元素
//下面离散化
int nIntervalNo = 0;
for( i = 0; i < nCount; i ++ ) {
hash[x[i]] = nIntervalNo;
if( i < nCount -1) {
if( x[i+1] -x[i] == 1)nIntervalNo ++;
else nIntervalNo += 2;//表示除了两个端点,中间还有一段 ,整段用一个节点表示,正是节约内存处理
}
}
BuildTree( Tree,0,nIntervalNo );
int nSum = 0;
for( i = n -1; i >= 0; i --) { // 从后往前看每个海报是否可见,若上面的海报已经把这个区间覆盖了,下面的海报就不可见了
//此处posters[i]的左右两个端点和中间的区间hash成了intervalnode,最多一共2*i(端点)+2*i-1(区间)
if( Post(Tree,hash[posters[i].L],hash[posters[i].R]))nSum ++;
}
printf("%d\n",nSum);
}
return 0;
}