codeforces 624d 623b Array GCD


过年玩了20天 尴尬 都不会写了


题意:有两种操作,每种只能用一次,第一种对于一段连续区间进行移除(不能全删完),代价是长度*a,第二种是对于一些数进行+1或者-1,使得最后的剩余的最大公约数大于1


思路:由于不能全删完,所以至少会有一个数留着,这个数肯定会是头一个或最后一个,最大公约数肯定是在选中的这个数最后状态中的一个约数,而我们只要先枚举这个数是多少(一共6种),然后枚举他的素因子,用dp顺推即可。


#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<queue>
#include<math.h>
using namespace std;
#define LL long long
#define N 1000010
LL dp[N][3];

int a[N];

LL cost1,cost2;

int prime[N];
int vis[N];
int cnt;

int fac[N];

void init()
{
    for(int i=2;i<N;i++)
    {
        if(!vis[i])prime[cnt++]=i;
        for(int j=0;j<cnt&&prime[j]*i<N;j++)
        {
            vis[prime[j]*i]=1;
            if(i%prime[j]==0)break;
        }
    }
}

LL getAns(int st,int ed,int v)
{
    memset(dp,0x3f,sizeof(dp));
    //printf("%lld",dp[0][0]);
    dp[st-1][0]=0;
    for(int i=st;i<=ed;i++)
    {
        dp[i][1]=min(dp[i-1][0],dp[i-1][1])+cost1;
        if(a[i]%v!=0)
        {
            if((a[i]+1)%v==0||(a[i]-1)%v==0)
            {
                dp[i][0]=dp[i-1][0]+cost2;
                dp[i][2]=min(dp[i-1][1],dp[i-1][2])+cost2;
            }
        }
        else
        {
            dp[i][0]=dp[i-1][0];
            dp[i][2]=min(dp[i-1][1],dp[i-1][2]);
        }
    }
    return min(min(dp[ed][0],dp[ed][1]),dp[ed][2]);
}

int factor(int x)
{
    int tot=0;
    for(int j=0;j<cnt&&x>=prime[j];j++)
    {
        if(x%prime[j]==0)
        {
            fac[tot++]=prime[j];
            while(x%prime[j]==0)
                x/=prime[j];
        }
    }
    if(x!=1)
        fac[tot++]=x;
    return tot;
}

int main()
{
    init();
    int n;
    scanf("%d%lld%lld",&n,&cost1,&cost2);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
    }
    LL ans=cost1*(LL)n;

    for(int i=-1;i<=1;i++)
    {
        LL cost=i==0?0:cost2;

        int siz=factor(a[n]+i);
        for(int j=0;j<siz;j++)
            ans=min(ans,getAns(1,n-1,fac[j])+cost);

        siz=factor(a[1]+i);
        for(int j=0;j<siz;j++)
            ans=min(ans,getAns(2,n,fac[j])+cost);
    }
    printf("%lld\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值