codeforces 894d Ralph And His Tour in Binary Country

D. Ralph And His Tour in Binary Country

Ralph is in the Binary Country. The Binary Country consists of n cities and (n - 1) bidirectional roads connecting the cities. The roads are numbered from 1 to (n - 1), the i-th road connects the city labeled (here ⌊ x⌋ denotes the x rounded down to the nearest integer) and the city labeled (i + 1), and the length of the i-th road is Li.

Now Ralph gives you m queries. In each query he tells you some city Ai and an integer Hi. He wants to make some tours starting from this city. He can choose any city in the Binary Country (including Ai) as the terminal city for a tour. He gains happiness (Hi - L) during a tour, where L is the distance between the city Ai and the terminal city.

Ralph is interested in tours from Ai in which he can gain positive happiness. For each query, compute the sum of happiness gains for all such tours.

Ralph will never take the same tour twice or more (in one query), he will never pass the same city twice or more in one tour.

Input

The first line contains two integers n and m (1 ≤ n ≤ 106, 1 ≤ m ≤ 105).

(n - 1) lines follow, each line contains one integer Li (1 ≤ Li ≤ 105), which denotes the length of the i-th road.

m lines follow, each line contains two integers Ai and Hi (1 ≤ Ai ≤ n, 0 ≤ Hi ≤ 107).

Output

Print m lines, on the i-th line print one integer — the answer for the i-th query.

Examples

input
2 2
5
1 8
2 4
output
11
4
input
6 4
2
1
1
3
2
2 4
1 3
3 2
1 7
output
11
6
3
28

Note

Here is the explanation for the second sample.

Ralph's first query is to start tours from city 2 and Hi equals to 4. Here are the options:

He can choose city 5 as his terminal city. Since the distance between city 5 and city 2 is 3, he can gain happiness 4 - 3 = 1.
He can choose city 4 as his terminal city and gain happiness 3.
He can choose city 1 as his terminal city and gain happiness 2.
He can choose city 3 as his terminal city and gain happiness 1.
Note that Ralph can choose city 2 as his terminal city and gain happiness 4.
Ralph won't choose city 6 as his terminal city because the distance between city 6 and city 2 is 5, which leads to negative happiness for Ralph.
So the answer for the first query is 1 + 3 + 2 + 1 + 4 = 11.

题意

有n个城市,i和2i存在一条边,i和2i+1也连一条边。
给你每条边的长度。
现在给你m个询问,每个询问给你x和h,表示起点为x,然后让你求sigma(max(h-dist[i],0))

题解

每个点都是往后连的,我们定义函数query(x,y)表示起点为x,与他相连且只考虑比他大的点,能获得的快乐一共是多少。

然后我们再不停的/2去算这个log就好了。

。。。看不懂题解没关系,读读代码就好了,代码很容易理解的。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+7;

int n,m;
vector<long long> l[maxn],s[maxn];
int t[maxn];
long long query(int x,long long h){
    if(h<=0)return 0;
    int p = upper_bound(l[x].begin(),l[x].end(),h)-l[x].begin()-1;
    return (p+1)*h-s[x][p];
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=2;i<=n;i++){
        scanf("%d",&t[i]);
    }
    for(int i=n;i>=1;i--){
        l[i].push_back(0);
        vector<int>b={i*2,i*2+1};
        for(int x:b){
            if(x>n)continue;
            for(int y:l[x]){
                l[i].push_back(y+t[x]);
            }
        }
        sort(l[i].begin(),l[i].end());
        s[i].resize(l[i].size());
        for(int j=1;j<l[i].size();j++){
            s[i][j]=s[i][j-1]+l[i][j];
        }
    }
    for(int i=1;i<=m;i++){
        int a,h;
        scanf("%d%d",&a,&h);
        long long ans = query(a,h);
        while(a>1){
            int b = a;
            h-=t[a];
            a>>=1;
            if(h<=0)break;
            ans+=h;
            int x=a*2==b?a*2+1:a*2;
            if(x<=n){
                ans+=query(x,h-t[x]);
            }
        }
        cout<<ans<<endl;
    }
}
 
 
具体查找的时候就是往比当前节点编号大的节点走收获query个 然后由编号比当前节点小的节点往当前节点走收获h[i]个 然后由当前节点往兄弟节点与编号比兄弟节点大的且与兄弟节点相连的节点走收获query个
还有 s就是前缀和 排序是为了便于筛选出比h小的路径

### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值