weka实战002:apriori关联规则算法

关联规则算法用于发现商品之间的关联性,如购物篮分析中的啤酒与尿布。Apriori算法通过计算频繁集和关联规则,找出数据中的模式。本文以具体例子解释算法流程,包括交易处理、频繁项集生成、关联规则计算,同时指出其对连续值属性的处理限制及优化策略。
摘要由CSDN通过智能技术生成

关联规则算法最出名的例子就是啤酒和尿布放一起卖。


假如我们去超市买东西,付款后,会拿到一张购物清单。这个清单就是一个Transaction。对关联规则算法来说,每个产品的购买数量是无意义的,不参与计算。


许许多多的人买东西,生成了N个购物清单,也就是N个Transaction。


那么,这些Transaction上的货物之间有什么有用的关系呢?这些关系可以用什么方式表达出来呢?这就是关联规则算法要解决的问题。


下面,我们用一个具体的例子解释这个问题:


1. 假设有三个Transaction分别是:

t1 = {'a', 'b', 'c', 'd'}

t2 = {'a', 'c', 'e'};

t3 = {'b', 'c', 'f'}

其中,abcdef都是货物的ID,简写是为了方便理解。


2. 我们看一下,就知道只要买了'a',就可能会买'c',或者说,只要买了'c'就很可能买了'a',而且,在2个Transaction上都出现了。这个规律可以表达成:

  'c' ==> 'a'(66.67%)

后面的66.67%叫支持度,也就是'a'和'c'在一起出现的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值