题意:一张有向图,给出起点和终点。每个点有个交通灯,可能是蓝色或紫色(什么鬼。。)。每个点的蓝色和紫色各有一个持续时间(每个点的交通灯数据不一定相同),并且有一个0时刻的初始颜色以及初始颜色剩余的持续时间(毛子干嘛非要把题目弄这么复杂)。每条道路有一个非负整数的长度。从一个节点到另一个节点,当且仅当这两个节点的交通灯颜色相同,也就是说如果到了一个节点,想要去另一个节点而那个节点和这个颜色不同,需要等待一定的时间。求起点到终点的最短路长度和路径上经过的节点,如不连通输出一个零。
开始的时候想了一下建模后跑最短路之类的,发现不太现实。
然后想了一下这题的状态转移方程:dis[v] = min(dis[v], wait+dis[u][v]); 其中wait是一个不定量,表示等待至的时间(显然≥dis[u])。
对于这种题,有向图上有状态转移方程,需要将每个节点的状态值最优化,但是有环不方便转移也不能强连通缩点时,一种比较通用的写法就是根据SPFA的思想,若一个点被更新,则将它通向的点压入队列待更新(NOIP2009最优贸易一题可以用此方法代替tarjan缩点)。这道题而言,若一个点的距离值变小(松弛成功),就将临界点压入队列。当然,可以看出这题就是一个最短路,所以dijkstra也是可以的,但是dijkstra对于有向图上无规则DP的通用性不如SPFA。
然后还有就是怎么判定时间,这点非常绕脑袋。一定要认真推算。注意永远不相等的判定,只要连续三个周期不相等即可(我一开始想了半天,不是很好直接表示,后来在网上找到的这种判定方法)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN = 305, MAXM = 28050;
const int INF = 0x3f3f3f3f;
struct Node {
int to, d;
Node*next;
}Edge[MAXM], *ecnt=Edge, *adj[MAXN];
void adde(int a, int b, int d)
{
(++ecnt)->to = b;
ecnt->d = d;
ecnt->next = adj[a];
adj[a] = ecnt;
}
int S, T, N, M;
int oc[MAXN]; //original color, 0 for blue and 1 for purple
int rest[MAXN], tb[MAXN], tp[MAXN];
int dis[MAXN], pre[MAXN];
int rou[MAXM], rn;
inline int color(int u, int t)
{
if (t < rest[u]) return oc[u];
t = (t - rest[u]) % (tb[u]+tp[u]);
if (oc[u]==0) return t<tp[u] ? 1 : 0;
return t<tb[u] ? 0 : 1;
}
inline int nexttm(int u, int t)//下一次变色时间
{
int t1;
if (t < rest[u]) t1 = rest[u];
else {
t1 = (t - rest[u]) % (tb[u]+tp[u]);
if (oc[u]==0) {
if (t1 < tp[u]) t1 = t+tp[u]-t1;
else t1 -= tp[u], t1 = t+tb[u]-t1;
}
else {
if (t1 < tb[u]) t1 = t+tb[u]-t1;
else t1 -= tb[u], t1 = t+tp[u]-t1;
}
}
return t1;
}
bool relax(int u, int v, int d)
{
if (dis[v] < dis[u]) return 0;
int c1 = color(u, dis[u]), c2 = color(v, dis[u]);
if (c1 == c2) {
if (dis[u]+d < dis[v]) { dis[v] = dis[u]+d; return 1; }
return 0;
}
else {
int t1 = dis[u], t2 = dis[u], wait = -1, t;
for (int i = 1; i<4; ++i)
{
t1 = nexttm(u, t1);
t2 = nexttm(v, t2);
if (t1==t2) continue;
t = t1 < t2 ? t1 : t2;
if (color(u, t) == color(v, t)) { wait = (t1<t2?t1:t2); break; }
}
if (wait==-1 || wait+d>=dis[v]) return 0;
dis[v] = wait + d;
return 1;
}
}
queue<int> Q;
bool inq[MAXN];
void SPFA()
{
memset(dis, 0x3f, sizeof dis);
Q.push(S);
inq[S] = 1; dis[S] = 0;
while (!Q.empty()) {
int u = Q.front();
Q.pop(); inq[u] = 0;
for (Node*p = adj[u]; p; p=p->next)
if (relax(u, p->to, p->d)) {
pre[p->to] = u;
if (!inq[p->to])
Q.push(p->to), inq[p->to] = 1;
}
}
}
int main()
{
int a, b, c;
scanf("%d%d%d%d", &S, &T, &N, &M);
if (S==T) { printf("0\n%d\n", S); return 0; }
char str[5];
for (int i = 1; i<=N; ++i) {
scanf("%s%d%d%d", str, rest+i, tb+i, tp+i);
oc[i] = (str[0]=='P');
}
for (int i = 1; i<=M; ++i)
{
scanf("%d%d%d", &a, &b, &c);
adde(a, b, c); adde(b, a, c);
}
SPFA();
if (dis[T]>=INF) { puts("0"); return 0; }
printf("%d\n", dis[T]);
a = T;
do { rou[++rn] = a; a = pre[a]; } while (a);
for (int i = rn; i>=1; --i)
printf("%d%c", rou[i], i==1?'\n':' ');
return 0;
}