常见动态规划算法问题策略分析

本文介绍了动态规划的基本思想和求解步骤,并详细分析了装配线调度问题、矩阵链乘问题、最长公共子序列、最大子段和、0-1背包问题等经典算法,探讨了自底向上和自顶向上的解决策略,强调了动态规划在解决最优问题中的应用。
摘要由CSDN通过智能技术生成

 本文总结了几种常见动态规划算法的分析策略,但不做案例的具体分析,阅读前最好对这几种算法有一定基础了解。


动态规划策略


1.动态规划介绍

动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。


2.动态规划求解步骤

(1)  确定最优解结构

(2)  递归定义最优解的值

(3)  自底向上计算最优解的值

(4)  重构最优解



几种动态规划算法策略分析


1.装配线调度问题

分析:首先确定最优解结构,分析问题可知大致分为两种情况:

从第一个站出站(j=1)和从第j个站出站(j>=2)。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值