Vehicle detection and recognition for intelligent traffic survelliance system 论文

本文探讨了智能交通监控系统中车辆检测与识别的过程,主要涉及Haar分类器的使用,包括Haar-like特征、积分图法、AdaBoost算法以及级联分类器。Haar特征用于车辆检测,结合积分图法能快速计算特征值,AdaBoost算法通过级联多个弱分类器形成强分类器,提高检测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Vehicle detection and recognition for intelligent traffic survelliance system

一、过程梳理

  • a)Vehicle detection(车辆检测)
    • 1、Haar-like feature
    • 2、AdaBoost algorithm
  • b)Vehicle recognition(车辆识别)
    • 1、Garbor wavelets transform
    • 2、Local gabor binary pattern and histogram sequence (LGBPHS)
  • 3、feature dimension reduction(using PCA)

二、Haar分类器

A)介绍

Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联;

B)Haar分类器算法的要点如下:
  • ① 使用Haar-like特征做检测。
  • ② 使用积分图(Integral Image)对Haar-like特征求值进行加速。
  • ③ 使用AdaBoost算法训练区分人脸和非人脸的强分类器。
  • ④ 使用筛选式级联把强分类器级联到一起,提高准确率。

三、Haar特征(H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值