ligh oj 1004 - Monkey Banana Problem

You are in the world of mathematics to solve the great "Monkey Banana Problem". It states that, a monkey enters into a diamond shaped two dimensional array and can jump in any of the adjacent cells down from its current position (see figure). While moving from one cell to another, the monkey eats all the bananas kept in that cell. The monkey enters into the array from the upper part and goes out through the lower part. Find the maximum number of bananas the monkey can eat.

Input

Input starts with an integer T (≤ 50), denoting the number of test cases.

Every case starts with an integer N (1 ≤ N ≤ 100). It denotes that, there will be 2*N - 1 rows. The ith (1 ≤ i ≤ N) line of next N lines contains exactly i numbers. Then there will be N - 1lines. The jth (1 ≤ j < N) line contains N - j integers. Each number is greater than zero and less than 215.

Output

For each case, print the case number and maximum number of bananas eaten by the monkey.

Sample Input

Output for Sample Input

2

4

7

6 4

2 5 10

9 8 12 2

2 12 7

8 2

10

2

1

2 3

1

Case 1: 63

Case 2: 5

Note

Dataset is huge, use faster I/O methods.

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[200][200],dp[200][200];
int main()
{
    int n,r,ca=1;
	scanf("%d",&r) ;
	while(r--)
	{
		scanf("%d",&n);	
		for(int i=1;i<=n;i++)
			for(int j=1;j<=i;j++)
			{
				scanf("%d",&a[i][j]);
				dp[i][j]=0;
			}		     				  
		for(int i=n+1;i<=2*n-1;i++)
		   for(int j=1;j<=2*n-i;j++) 
           {
				scanf("%d",&a[i][j]);
				dp[i][j]=0;
	       }
		   		     	                
        dp[1][1]=a[1][1];		       
		for(int i=1;i<n;i++)
        	for(int j=1;j<=i;j++)
        	{    
	        	  dp[i+1][j]=max(dp[i+1][j],a[i+1][j]+dp[i][j]);
	        	  dp[i+1][j+1]=max(dp[i+1][j+1],a[i+1][j+1]+dp[i][j]);
	        }
					   	  
		for(int i=n+1;i<=2*n-1;i++)
		  for(int j=1;j<=2*n-i;j++)
	       	 dp[i][j]=max(dp[i-1][j],dp[i-1][j+1])+a[i][j];
	                
      printf("Case %d: %d\n",ca++,dp[2*n-1][1]);		  		  			       
	}    
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值