剑指offer—连续子数组的最大和
题目描述:给定一个输入数组,输出该数组的中所以子数组的和的最大值。时间复杂度为O(n)。
思路:
一、由于数组中有正有负,因此我们可以顺序遍历一般数组,依次累加每一个数字。如果累加到某一个数字i时的结果比他本身还小时,就说明前i-1个数字构成的子序列和还没有这一个数字i大。故将之前得到的和抛弃,选择当前数字i作为新的最大和,继续循环。这样值循环一次得到的结果复杂度当然为O(n)。
二、动态规划的方法:
递归公式为:
f(i)={array[i]f(i−1)+array[i]i=0或者f(i−1)⩽0i≠0并且f(i−1)>0
f
(
i
)
=
{
a
r
r
a
y
[
i
]
i
=
0
或
者
f
(
i
−
1
)
⩽
0
f
(
i
−
1
)
+
a
r
r
a
y
[
i
]
i
≠
0
并
且
f
(
i
−
1
)
>
0
以第i-1个数字结尾的子数组中所以数字的和小于0时,将这个和与第i个数字相加比第i个数字还要小时,此时第i个数字本身构成的字数组就为最大和。如果加上第i个数字比之前的和要大,当前最大和就为前i-1个数字的和加上i。
# -*- coding:utf-8 -*-
class Solution:
def FindGreatestSumOfSubArray(self, array):
# write code here
arr_len = len(array)
sumtemp = 0
result = array[0]
for i in array:
if sumtemp > 0:
sumtemp += i
else:
sumtemp = i
if result < sumtemp:
result = sumtemp
return result