假设有个n个活动的集合S = {a1,a2,a3……,an},这些活动使用同一资源(如同一个阶梯教室),而这个资源在某个时刻只能提供一个活动选择,每个活动有个开始时间si和一个结束时间fi,目标是选出一个最大的互相兼容的活动集合。假定活动已按照结束时间的单调递增顺序排序:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
si | 1 | 3 | 0 | 5 | 3 | 5 | 8 | 8 | 9 | 2 | 12 |
fi | 4 | 5 | 6 | 7 | 9 | 9 | 10 | 11 | 12 | 14 | 16 |
接下来求解最优解,接下来,我们应该选择这样的一个活动:选出它后剩下的资源能够尽可能的被尽量多的活动所使用,由于活动是按照结束时间单调递增排序,因此选择a1,接下来,就可以使用迭代或者递归的方法:
/**
递归求解活动安排的最优解
@param s 所有活动的起始时间数组
@param f 所有活动的结束时间数组
@param k 当前指向选择的活动
@param n 所有活动的个数
*/
void recursiveActivitySelector(int *s, int *f, int k, int n)
{
//TODO: 1.从当前活动开始循环查找出最早结束的活动
int m = k + 1;
while (m < n && s[m] < f[k])
m = m + 1;
if (m <= n)
{
//TODO: 3.继续递归查找下一个活动
printf("%d, ", k);
recursiveActivitySelector(s, f, m, n);
}
}
/**
迭代求解活动安排的最优解
*/
void greedyActivitySelector ()
{
//TODO: 1.给定活动的开始时间和结束时间
int s[11] = {1, 3, 0, 5, 3, 5, 6, 8, 8, 2, 12};
int f[11] = {4, 5, 6, 7, 9, 9, 10, 11, 12, 14, 16};
//TODO: 2.循环求解,给个结束活动的索引
int k = 0;
for (int m = 1; m < 11; m++)
{
//TODO: 3.当选中的活动的开始时间大于上一个活动的结束时间时,输出
if (s[m] >= f[k])
{
printf("%d, ", m);
//TODO: 4.结束索引指向该活动
k = m;
}
}
}