学习目标
- 完成二分查找和移除元素相关题目
学习内容
654. 最大二叉树(Middle)
题目链接:654. 最大二叉树
题目:给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:
创建一个根节点,其值为 nums 中的最大值。
递归地在最大值 左边 的 子数组前缀上 构建左子树。
递归地在最大值 右边 的 子数组后缀上 构建右子树。
返回 nums 构建的 最大二叉树 。
示例 1:
输入:nums = [3,2,1,6,0,5]
输出:[6,3,5,null,2,0,null,null,1]
解释:递归调用如下所示:
- [3,2,1,6,0,5] 中的最大值是 6 ,左边部分是 [3,2,1] ,右边部分是 [0,5] 。
- [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
- 空数组,无子节点。
- [2,1] 中的最大值是 2 ,左边部分是 [] ,右边部分是 [1] 。
- 空数组,无子节点。
- 只有一个元素,所以子节点是一个值为 1 的节点。
- [0,5] 中的最大值是 5 ,左边部分是 [0] ,右边部分是 [] 。
- 只有一个元素,所以子节点是一个值为 0 的节点。
- 空数组,无子节点。
思路:题目已经给出思路, 注意限定范围.
时间复杂度:O(nlogn)
空间复杂度:O(logn)
解决方案:
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
return build(nums, 0, nums.length);
}
public TreeNode build(int[] nums, int left, int right) {
if(left >= right) return null;
int max = Integer.MIN_VALUE;
int rootIndex = 0;
for(int i = left; i < right; i ++) {
if(nums[i] > max) {
max = nums[i];
rootIndex = i;
}
}
TreeNode root = new TreeNode(max);
root.left = build(nums, left, rootIndex);
root.right = build(nums, rootIndex + 1, right);
return root;
}
}
小结:注意限定范围, 上面是 [left, right) 的左闭右开区间.
617. 合并二叉树(Easy)
题目链接:617. 合并二叉树
题目:给你两棵二叉树: root1 和 root2 。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始。
示例 1:
输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]
示例 2:
输入:root1 = [1], root2 = [1,2]
输出:[2,2]
思路:没什么好说的, 题目已经给思路了.
时间复杂度:O(n)
空间复杂度:O(logn)
解决方案:
class Solution {
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if(root1 == null && root2 == null) return null;
TreeNode root = new TreeNode();
if(root1 == null) {
return root2;
}
if(root2 == null) {
return root1;
}
root.val = root1.val + root2.val;
root.left = mergeTrees(root1.left, root2.left);
root.right = mergeTrees(root1.right, root2.right);
return root;
}
}
小结:唯一缺点是可能会破坏原来的树 root1 和 root2, 不过也是题目要求的…
700. 二叉搜索树中的搜索(Easy)
题目链接:700. 二叉搜索树中的搜索
题目:给定二叉搜索树(BST)的根节点 root 和一个整数值 val。
你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。
示例 1:
输入:root = [4,2,7,1,3], val = 2
输出:[2,1,3]
示例 2:
输入:root = [4,2,7,1,3], val = 5
输出:[]
思路:没有太多可说的,唯一要注意的就是二叉搜索树左大右小的性质可以帮助找到 Value
时间复杂度:O(logn)
空间复杂度:O(logn)
解决方案:
class Solution {
public TreeNode searchBST(TreeNode root, int val) {
if(root == null) return null;
if(root.val == val) return root;
if(root.val > val) return searchBST(root.left, val);
return searchBST(root.right, val);
}
}
小结:二叉搜索树性质复习.
98. 验证二叉搜索树(Middle)
题目链接:98. 验证二叉搜索树
题目:给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
节点的左子树只包含 小于 当前节点的数。
节点的右子树只包含 大于 当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:root = [2,1,3]
输出:true
示例 2:
输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。
思路:这道题题目比较奇特, 因此一开始并没有思路. 参照 Carl 哥的题解, 这道题应该:
- 验证二叉搜索树可以将其看做一个升序数组, 中序遍历比对是否升序
时间复杂度:O(n)
空间复杂度:O(log n)
解决方案:
class Solution {
private TreeNode preNode = null;
public boolean isValidBST(TreeNode root) {
if(root == null) return true;
if(!isValidBST(root.left)) return false;
if(preNode != null && preNode.val >= root.val) return false;
preNode = root;
return isValidBST(root.right);
}
}
小结:上面代码经过简写, 为了理解方便可以:
class Solution {
private TreeNode preNode = null;
public boolean isValidBST(TreeNode root) {
if(root == null) return true;
//验证左边, 若有假直接return
bool left = isValidBST(root.left)
if(!left) return false;
if(preNode != null && preNode.val >= root.val) return false;
preNode = root;
//左边和中间节点已经被验证为true了才能到这里
bool right = isValidBST(root.right)
return right;
}
}
总结
一些题目没接触过是很难知道怎么写的, 如 98, 所以要多拓宽一下视野.