1. 【Part2】 Contour Detection and Hierarchical Image Segmentation【轮廓检测&图像分割】

Reference from
Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE transactions on pattern analysis and machine intelligence, 33(5), 898-916.
原文链接 https://ieeexplore.ieee.org/abstract/document/5557884

本文研究了计算机视觉中的两个基本问题:轮廓检测和图像分割。 我们为这两项任务提供了最先进的算法。 我们的轮廓检测器将多个局部线索组合成基于谱聚类的全局化框架。 我们的分割算法包括用于将任何轮廓检测器的输出转换为分层区域树的通用机器。 以这种方式,我们将图像分割的问题减少到轮廓检测的问题。 广泛的实验评估表明,我们的轮廓检测和分割方法都明显优于竞争算法。 可以通过用户指定的注释以交互方式细化自动生成的分层分段。 多个图像分辨率的计算提供了将我们的系统耦合到识别应用程序的手段。

3. Contour Detection

作为轮廓检测的起点,我们考虑Martin等人的工作[2],定义函数 P b ( x , y , θ ) Pb(x,y,θ) Pb(x,y,θ),该函数通过测量局部图像亮度,颜色和纹理通道的差异来预测每个图像像素 ( x . y ) (x.y) (x.y)上具有方向 θ θ θ的边界boundary的后验概率。 在本节中,我们将回顾这些线索,介绍我们自己的 P b Pb Pb检测器的多尺度版本,并描述我们在这种多尺度局部检测器上运行的新的全局化方法。

3.1 Brightness, Color, and Texture Gradients

P b Pb Pb轮廓检测器的基本构建块是从强度图像 intensity image I I I计算定向梯度信号 oriented gradient signal G ( x , y , θ ) G(x,y,θ) G(x,y,θ) 。 该计算通过在位置 ( x . y ) (x.y) (x.y)放置圆盘,以角度 θ θ θ沿直径分割成两个半圆盘(Fig.4.) 来进行。 对于每个半圆盘,我们对其覆盖的像素的强度值进行直方图。 位置 ( x . y ) (x.y) (x.y)处的梯度幅度 G G G由两个半盘直方图 g g g h h h之间的 χ 2 \chi^2 χ2距离来定义的:
在这里插入图片描述
然后,我们应用二阶最小二乘平滑滤波(Savitzky-Golay滤波)[63]来增强局部最大值并在与 θ θ θ正交的方向上平滑多个检测峰值。 这相当于将圆柱抛物线(其轴沿 θ θ θ方向定向)拟合到围绕每个像素的局部2D窗口,并将该像素处的响应替换为拟合估计的响应。

Alt
图4.直方图的定向梯度(Oriented gradient of historgram)。 给定一张强度图像,考虑一个圆盘以每个像素为中心,并在角度 θ θ θ沿直径分开。 我们计算每个半圆盘中强度值的直方图,并输出两个直方图之间的 χ 2 \chi^2 χ2距离作为梯度幅度。
(b)中所示的蓝色和红色分布是左边图像中蓝色和红色区域中的像素亮度值的直方图。
©显示了在对原始直方图差分输出difference output应用二阶Savitzky-Golay平滑滤波器之后,在方向 θ = π / 4 θ=\pi/4 θ=π/4处半径为5个像素的圆盘的示例结果。
请注意,为了便于说明,(a)显示了较大的光盘(半径为50像素)。

图4显示了一个例子。 该计算的动机是轮廓对应于图像不连续性,直方图提供了用于对图像区域region的内容进行建模的鲁棒机制。 强方向梯度响应(oriented gradient response)意味着像素可能位于两个不同区域之间的边界上。

P b Pb Pb检测器将从一个输入图像的变换中获得的方向梯度信号组合成四个单独的特征信道并独立地处理每个信道。 前三个对应于CIE Lab颜色空间的通道,我们将其称为亮度,颜色a和颜色b通道。 对于灰度图像,亮度通道是图像本身,不使用颜色通道。

第四个通道是纹理通道,它为每个像素分配一个纹理基元id。 这些分配由另一个过滤阶段计算得到的,该过滤阶段在方向梯度直方图计算之前发生。 此阶段将输入图像转换为灰度形式,并将该图像与图5中所示的17个高斯导数和中心环绕滤波器(center surround filter)的集合进行卷积。每个像素与(17维)响应向量相关联,每个滤波器包含一个条目。 然后使用K均值对这些向量进行聚类。 聚类中心定义特定图像的纹理基元集,而且每个像素被分配到最近聚类中心中从[1,K]的整数id。 实验表明选择K = 64个纹理基元就足够了。

Alt
图5.用于创建纹理基元的过滤器。 我们使用八个定向的偶数和奇数对称高斯导数滤波器和一个中心环绕(高斯差分)滤波器。

我们接下来形成一个图像,其中每个像素 [ 1 , K ] [1,K] [1,K]中具有整数值,由其纹理基元id确定。 在图6中可以看到一个例子(左列,从顶部开始的第四个面板)。 在此图像上,我们以与亮度和颜色通道相同的方式计算定向半圆片中直方图的差异。

Alt
图6.多尺度 P b Pb Pb。 左列,从上到下:Lab颜色空间的亮度,颜色a和b通道,以及使用图像特定纹理计算的纹理基元通道,在这之后是输入图像。 行:跟着每个通道,我们显示在 θ = 0 θ = 0 θ=0 θ = π / 2 θ = \pi/2 θ=π/2(水平和垂直)直方图的方向梯度(如图4所示),以及在 [ 0 , π ) [0,\pi) [0,π) 中八个方向上的最大响应(右列)。 除了原始图像,我们还在所有四个通道和三个尺度上显示定向梯度的组合。 右下方的面板(红色边框)显示了多尺度轮廓检测器的最终输出 m P b mPb mPb

因此,获得任意输入 I I I G ( x , y , θ ) G(x,y,θ) G(x,y,θ) 是我们的局部线索所依赖的核心操作。 在附录中,我们提供了一种新的近似方案,用于降低该计算的复杂性。

3.2 Multiscale Cue Combination

如上所述,我们现在介绍我们自己的 P b Pb Pb检测器的多尺度扩展。 请注意,Ren [28]和我们自己[3]的在同时期,他们引入了一种不同的,更复杂的,同样表现的多尺度扩展,并且还提出了Martin等人[2]在他们原始的多尺度实验中没有看到性能改进的可能的原因,包括他们使用较小的图像和他们的尺度选择。

为了检测精细和粗糙结构,我们考虑三个尺度的梯度: [ σ / 2 , σ , 2 σ ] [\sigma/2,\sigma,2\sigma] [σ/2,σ,2σ] 用于每个亮度,颜色和纹理通道。 图6展示了为每个信道获得的定向梯度的示例。 对于亮度通道,我们使用 σ = 5 σ = 5 σ=5 像素,而对于颜色和纹理,我们使用 σ = 10 σ = 10 σ=10 像素。 然后,我们将这些局部线索线性组合成一个单一的多尺度定向信号:
在这里插入图片描述
其中 s s s 表示尺度索引, i i i表示特征通道索引(亮度,颜色a,颜色b和纹理),并且 G i , σ ( i , s ) ( x , y , θ ) G_{i,\sigma(i,s)}(x,y,\theta) Gi,σ(i,s)(x,y,θ) 测量在通道 i i i中 以 ( x , y ) (x,y) (x,y) 为中心 半径为 σ ( i , s ) \sigma(i,s) σ(i,s) 并以角度 θ θ θ沿直径切割成两个半圆盘之间的直方图差异。参数 α i , s \alpha_{i,s} αi,s 对每个梯度信号的相对贡献进行加权。 在我们的实验中,我们在区间 [ 0 , π ] [0,\pi] [0,π] 中将空间定位等分8份 取样 θ θ θ。 将方向orientation上的最大响应作为每个像素的边界强度的度量:
在这里插入图片描述
一个可选的非极大值抑制(nonmaximum suppression)步骤[22]产生细化的实值轮廓。

与使用逻辑回归分类器组合线索的[2]和[28]相比,我们使用训练图像和BSDS中相应的ground truth的F-度量(F-measure)按照梯度上升来学习权重 α i , s \alpha_{i,s} αi,s

3.3 Globalization

谱聚类是我们全局化机制的核心。 将本节中描述的算法与其他方法[45],[47]区分开来的关键因素是“软”方式,其中我们使用从谱划分中获得的特征向量。

作为谱聚类阶段的输入,我们构建稀疏对称亲和度矩阵 W W W通过使用intervening contour(介入轮廓)线索[49],[64],[65], m P b mPb mPb沿连接两个像素的线的最大值。 我们将固定半径 r r r内的所有像素 i i i j j j 和亲和度连接起来:
在这里插入图片描述
其中 i j ‾ \overline{ij} ij是连接 i i i j j j的线段, ρ \rho ρ是常数。 我们设 r = 5 r = 5 r=5 像素, ρ = 0.1 ρ = 0.1 ρ=0.1

为了引入全局信息,我们定义 D i i = ∑ i W i j D_{ii} = \sum_i {W_{ij}} Dii=iWij 并求解 ( D − W ) v = λ D v (D-W) \mathbf v = \lambda D \mathbf v (DW)v=λDv (2) 系统的广义特征向量 { v 0 , v 1 , v 2 , . . . , v n \mathbf v_0,\mathbf v_1,\mathbf v_2,...,\mathbf v_n v0,v1,v2,...,vn} , 其对应的 n + 1 n + 1 n+1个最小特征值 0 = λ 0 ≤ λ 1 ≤ ⋯ ≤ λ n 0 = λ_0≤λ_1≤⋯≤λ_n 0=λ0λ1λn。 图7显示了具有四个特征向量的示例。 在实践中,我们使用 n = 16 n = 16 n=16

Alt
图7.谱 P b Pb Pb。 (a)图像。 (b)稀疏的非最大抑制多尺度Pb信号定义了连接固定半径内的像素的稀疏亲和度矩阵。 像素 i i i j j j具有低亲和力,因为强边界将它们分开,而 i i i k k k具有高亲和力。 (c)由谱聚类产生的前四个广义特征向量。 (d)通过在特征向量上运行K均值聚类来对图像进行划分会错误地破坏平滑区域。 (e)相反,我们计算特征向量的梯度,将它们转换回轮廓信号。

此时,标准的归一化切割方法将每个像素与由 n n n个本征向量的条目形成的长度 n n n描述符相关联,并使用诸如K均值的聚类算法来创建图像的硬分区。 不幸的是,这会导致不正确的分割,因为特征向量平滑变化的大均匀区域被打破。 图7示出了横跨天空区域的特征向量的这种逐渐变化导致不正确分区的示例。

为了克服这个困难,我们观察到特征向量本身带有轮廓信息。 将每个特征向量 v k \mathbf v_k vk作为图像处理,我们在多个方向 θ θ θ将其与高斯方向导数滤波器 (Guassian directional derivative filter)卷积,获得定向信号 oriented signal { ▽ θ v k ( x , y ) \bigtriangledown_\theta \mathbf v_k (x,y) θvk(x,y)} 。 以这种方式获取衍生物会忽略先前导致错误的平滑变化。 然后组合来自不同特征向量的信息以提供我们的边界检测器的“谱”分量:
在这里插入图片描述
通过 1 / λ k 1/\sqrt{\lambda_k} 1/λk 加权的动机是广义特征值问题作为质量弹簧系统的物理解释[66]。图7和8给出了特征向量,它们的方向导数和得到的 s P b sPb sPb信号的例子。

Alt
图8.特征向量携带轮廓信息。 (a)原始图像和谱 P b Pb Pb在方向上的最大响应, s P b ( x , y ) = max ⁡ θ sPb(x,y) = \max_\theta sPb(x,y)=maxθ{ s P b ( x , y , θ ) sPb(x,y,\theta) sPb(x,y,θ)}。 (b)用于创建 s P b sPb sPb的前四个广义特征向量 v 1 , . . . , v 4 \mathbf v_1,...,\mathbf v_4 v1,...,v4。 (c)对于每个特征向量,在方向上的最大梯度响应, max ⁡ θ \max_\theta maxθ{ ▽ θ v k ( x , y ) \bigtriangledown_\theta \mathbf v_k (x,y) θvk(x,y)}。

信号 m P b mPb mPb s P b sPb sPb传达不同的信息,因为前者在所有边缘处发射,而后者仅提取图像中最显着的曲线。 我们发现简单的线性组合足以从两种行为中受益。 然后,我们最终的全局边界概率(globalized probability of boundary)是局部信号和谱信号的加权和:
在这里插入图片描述
我们随后用sigmoid函数重新缩放 g P b gPb gPb以匹配概率解释。 与 m P b mPb mPb(10)一样,通过使用BSDS训练图像在F测量上的梯度上升(gradient ascent on the F-measure)来学习权重 β i , s β_{i,s} βi,s γ \gamma γ

3.4 Results

定性地说,多尺度线索与我们的全局化机制的结合解释为减少杂波边缘和输出中轮廓的完成,如图9所示。

Alt
图9.全局化的好处。 与局部探测器 P b Pb Pb相比,我们的探测器 g P b gPb gPb减少了杂波并完成了轮廓。 所示的阈值对应于图1中曲线上的F-测量值最大的点。

图10分解了多尺度和光谱信号对 g P b gPb gPb性能的贡献。 这些精确-召回曲线表明,由于在 s P b sPb sPb中使用全局信息导致了false positives的减少是集中在高阈值区域,而 g P b gPb gPb在两个世界中都是最好的,依赖于高精度区域中的 s P b sPb sPb和高召回区域中的 m P b mPb mPb

Alt
图10.全球化改善了轮廓检测。 从谱分割算法的特征向量导出的谱 P b Pb Pb检测器( s P b sPb sPb)提高了用作输入的局部多尺度 P b Pb Pb信号( m P b mPb mPb)的精度。 全局 g P gP gP( g P b gPb gPb),两者的学术组合,可提供更好的性能。 还要注意,使用多刻度( m P b mPb mPb)优于单刻度 P b Pb Pb。 结果显示在BSDS300上。

再看一下图1中BSDS300基准的轮廓检测器的比较, g P b gPb gPb相对于单一尺度 P b Pb Pb的精度的平均改善在召回范围 [ 0.1 , 0.9 ] [0.1,0.9] [0.1,0.9]中为10%。

Alt
图1. Berkeley分段数据集(BSDS300)基准测试中轮廓检测器的评估[2]。 领先的轮廓检测方法根据它们相对于human ground-truth 边界的最大F-度量( 2 ⋅ 精 确 率 ⋅ 召 回 率 精 确 率 + 召 回 率 \frac{2\cdot精确率\cdot召回率}{精确率+召回率} +2)进行排序。 Iso-F曲线以绿色显示。 我们的gPb检测器[3]的表现明显优于其他算法[2],[17],[18],[19],[20],[21],[22],[23],[24],[25] 几乎在整个运作体制中,[26],[27],[28]。三个人(human subjects)之间的平均一致性由绿点表示。

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值