HDU 3452 Bonsai | 最小割

这题让我很清楚得看到最小割的本质,实际就是用最小的代价,使得包含s的大S和包含t的大T分开。

最小代价就是所要求的最小割。

————————————————————————————————————————————————

题意:

给你一棵树,root根节点已经知道。每条边都有一个边权。让你用最小的代价使得根节点与叶子结点分开。


思路:

root节点作为源点s;

叶子节点连到汇点t,容量为INF;

其他节点就根据题目所给数据构建。


此外要找出哪个才是叶子结点,这个我用了dfs来搜。其实可以用一开始就用vecotr来保存邻接表,然后直接判断就可以得知。

————————————————————————————————————————————————

注意点:

流量可以为0,以及只有一个节点的情况。

————————————————————————————————————————————————

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <queue>
#include <vector>
#define debug cout<<"debug"<<endl;
using namespace std;
const int MAXEDGE = 5*1e5+ 5;
const int MAXN = 1010;
const int INF = 0x3F3F3F3F;
int n, r;
struct Edge
{
        int to, cap, flow, next;
};
Edge edge[MAXEDGE];
struct Dinic
{
        int s, t, pp;
        bool vis[MAXN];
        int head[MAXN];
        int d[MAXN], cur[MAXN];
        Dinic(int ss, int tt)
        {
                s = ss, t = tt;
                pp = 0;
                memset(head, -1, sizeof(head));
                memset(vis, false, sizeof(vis));    //一定要加!
        }
        void addEdge(int u, int v, int c)
        {
                edge[pp] = (Edge){v, c, 0, head[u]};
                head[u] = pp++;

                edge[pp] = (Edge){u, 0, 0,head[v]};
                head[v] = pp++;
        }
        void findLeaves(int u)  //dfs
        {
                int cnt = 0;
                int next = head[u];
                vis[u] = true;
                while(next != -1)
                {

                        Edge &e = edge[next];
                        if(vis[e.to])
                        {
                            next = e.next;
                            continue;
                        }

                        //vis[e.to] = true;
                        cnt ++;
                        findLeaves(e.to);
                        next = e.next;
                }
                if(cnt == 0)
                {
                        //cout<<"u = "<<u<<endl;
                        addEdge(u, t, INF);
                }
        }
        int getMaxFlow()
        {
                int res = 0;
                while(bfs())
                {
                    for(int i = 0;i < n + 5; i++)
                        cur[i] = head[i];

                    //cout<<"res = "<<res<<endl;
                    res += dfs(s, INF);
                }
                return res;
        }
        bool bfs()
        {
                memset(vis, false, sizeof(vis));
                d[s] = 0;
                vis[s] = true;
                queue <int> q;
                q.push(s);
                while(!q.empty())
                {
                        int u = q.front();
                        q.pop();
                        int next = head[u];
                        while(next != -1)
                        {
                                Edge &e = edge[next];
                                if(!vis[e.to] && e.cap > e.flow)
                                {
                                        d[e.to] = d[u] + 1;
                                        vis[e.to] = true;
                                        q.push(e.to);
                                }
                                next = e.next;
                        }

                }

                return vis[t];
        }
        int dfs(int u, int a)
        {
                if(u == t || a == 0)    return a;
                int &next = cur[u];
                int flow = 0, f;
                while(next != -1)
                {
                        Edge &e = edge[next];
                        if(d[e.to] == d[u] + 1 && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0)
                        {
                                e.flow += f;
                                edge[next^1].flow -= f;
                                flow += f;
                                a -= f;
                                if(a == 0)      break;
                        }
                        next = e.next;
                }
                //cout<<"flow = "<<flow<<endl;
                return flow;
        }
};

int main()
{
        while(scanf("%d%d",&n, &r), n&&r)
        {
                int u, v, c;
                int s = r, t = 0;
                Dinic dinic(s, t);
                for(int i = 0;i < n-1; i++)
                {
                        scanf("%d%d%d",&u, &v, &c);
                        dinic.addEdge(u, v, c);
                        dinic.addEdge(v, u, c);
                }
                if(n == 1)
                {
                    puts("0");
                    continue;
                }
                dinic.findLeaves(s);
                printf("%d\n",dinic.getMaxFlow());
        }
        return 0;
}




































评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值