题意:
给你两个区间[a,b],[c,d],还有一个k。让你从区间[a,b]中找出x,[c,d]中找出y,问共有多少组(x,y)使得gcd(x,y)=k。
(x,y)和(y,x)算一组。
思路:
参考:http://blog.csdn.net/yang_7_46/article/details/9072533
容斥。
普通容斥:
*如果gcd(x,y)=k,则gcd(x/k,y/k)=1。那么对于两个区间来说,我们都默认进行了b = b/k,d = d/k操作。(a,c固定为1)。(这样做并不会使得组数遗漏)
因为(x,y)和(y,x)只算一组,因此在容斥过程中,我们要保证x < y,这样才不会重复计算。
剩下就是容斥的过程,可以戳这里。
其它一些细节要自己处理一下,例如b = 1或者d = 1的时候。
莫比乌斯反演:
莫比乌斯资料:http://blog.csdn.net/acdreamers/article/details/8542292
定义f(n):gcd(x, y)为n的方案数。
定义F(n):gcd(x, y)是n的倍数的方案数。
则我们要求的就是f(1)。默认b < d,并且都已经除以k。
F(n) = (b/n)*(d/n);
套用莫比乌斯公式即可。
code(普通容斥):
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int MAXN = 1e5+5;
typedef long long LL;
int a, b, c, d, k;
bool isp[MAXN+5];
vector <int> vec[MAXN+5];
void prime()
{
memset(isp, false, sizeof(isp));
for(int i = 2;i <= MAXN; i++)
{
if(!isp[i])
{
vec[i].push_back(i);
for(int j = i*2; j <= MAXN; j += i)
{
isp[j] = true;
vec[j].push_back(i);
}
}
}
}
LL calc(int t, int p)
{
LL ret, v = 1;
int cnt = 0;
for(int i = 0;i < vec[t].size(); i++)
{
if((1<<i)&p)
{
cnt++;
v *= vec[t][i];
}
}
if(v == 0) return 0;
ret = (LL)(d-t)/v;
if(cnt%2 == 0) ret = -ret;
return ret;
}
void solve()
{
//tepan 1
LL res = d;
for(int i = 2;i <= b; i++)
{
res += d-i;
for(int j = 1;j < (1<<vec[i].size()); j++)
res -= calc(i, j);
}
printf("%I64d\n", res);
}
int main()
{
prime();
int T, cas = 0;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
printf("Case %d: ", ++cas);
if(k == 0)
{
puts("0");
continue;
}
b /= k, d /= k;
if(b > d) swap(b, d);
if(b == 0 || d == 0)
puts("0");
else
solve();
}
return 0;
}
code(莫比乌斯反演):
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+5;
typedef long long LL;
int b, d, k;
int prime[N], cnt;
int mu[N];
bool vis[N];
void Mobius() {
mu[1] = 1;
cnt = 0;
for(int i = 2;i < N; i++) {
if(!vis[i]) {
mu[i] = -1;
prime[cnt++] = i;
}
for(int j = 0;j < cnt; j++) {
if(i*prime[j] >= N) break;
vis[i*prime[j]] = true;
if(i%prime[j] != 0)
mu[i*prime[j]] = -mu[i];
else {
mu[i*prime[j]] = 0;
break;
}
}
}
}
int main() {
Mobius();
int T, cas = 0;
scanf("%d", &T);
while(T--) {
scanf("%*d%d%*d%d%d", &b, &d, &k);
printf("Case %d: ", ++cas);
if(k == 0) {
puts("0");
continue;
}
b /= k, d /= k;
if(b > d) swap(b, d);
LL ans = 0;
for(int i = 1;i <= b; i++)
ans += 1ll*mu[i]*(b/i)*(d/i);
LL tmp = 0;
for(int i = 1;i <= b; i++)
tmp += 1ll*mu[i]*(b/i)*(b/i);
printf("%I64d\n", ans-tmp/2);
}
return 0;
}