题意:
数独问题,给你9个连通块,每个连通块有9个位置。
现在已经有一些数字在上面,让你在空的位置上放数字。
问你是否存在方案,使得每个连通块包含1~9,并且每行每列都有1~9的数字。
输出结果参照样例。
思路:
题中并没有直接给出数独的情况,而是给了一个数值,里面包含了连通块以及是否有数字在该位置的信息。
首先根据所给的数值,bfs把每个连通块都找出来,然后编号。
剩下的,就是套个DLX的模板。(这题和lrj的大白书P410基本一样,可以去参考一下)。
code:
#include <bits/stdc++.h>
using namespace std;
const int N = 12;
const int NUM = 9;
typedef long long LL;
struct DLX {
static const int N = 1e4+5;
static const int MAXROW = 3005;
int n, sz;
int anscnt, ans[MAXROW], ansd;
int S[N];
int row[N], col[N];
int real[MAXROW];
int L[N], R[N], U[N], D[N];
void init(int n) {
this->n = n;
for(int i = 0;i <= n; i++)
U[i] = i, D[i] = i, L[i] = i-1, R[i] = i+1;
R[n] = 0; L[0] = n;
sz = n+1;
anscnt = 0;
memset(S, 0, sizeof(S));
}
void addRow(int r, vector <int>& columns) {
int first = sz;
for(int i = 0;i < columns.size(); i++) {
int c = columns[i];
L[sz] = sz-1;R[sz] = sz+1; D[sz] = c; U[sz] = U[c];
D[U[c]] = sz; U[c] = sz;
row[sz] = r; col[sz] = c;
S[c]++; sz++;
}
R[sz-1] = first; L[first] = sz-1;
}
void remove(int c) {
L[R[c]] = L[c];
R[L[c]] = R[c];
for(int i = D[c];i != c; i = D[i])
for(int j = R[i];j != i; j = R[j]) {
U[D[j]] = U[j];
D[U[j]] = D[j];
--S[col[j]];
}
}
void restore(int c) {
for(int i = U[c]; i != c; i = U[i]) {
for(int j = L[i];j != i; j = L[j]) {
S[col[j]]++;
U[D[j]] = j;
D[U[j]] = j;
}
}
L[R[c]] = c;
R[L[c]] = c;
}
bool dfs(int d) {
if(R[0] == 0) {
anscnt++; ansd = d;
for(int i = 0;i < d; i++)
real[i] = ans[i];
if(anscnt == 2) return true;
else return false;
}
int c = R[0];
for(int i = R[0]; i != 0; i = R[i])
if(S[i] < S[c]) c = i;
remove(c);
for(int i = D[c];i != c; i = D[i]) {
ans[d] = row[i];
for(int j = R[i];j != i; j = R[j])
remove(col[j]);
if(dfs(d+1)) return true;
for(int j = L[i];j != i; j = L[j])
restore(col[j]);
}
restore(c);
return false;
}
int solve() {
dfs(0);
return anscnt;
}
}dlx;
int a[N][N], p[N][N];
bool vis[N][N];
int dir[4][2] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
const int SLOT = 0;
const int ROW = 1;
const int COL = 2;
const int SUB = 3;
void init() {
memset(vis, false, sizeof(vis));
}
struct PP {
int x, y;
};
queue <PP> q;
void bfs(int s, int e, int tag) {
q.push((PP){s, e});
vis[s][e] = true;
p[s][e] = tag;
while(!q.empty()) {
PP t = q.front(); q.pop();
int tmp = a[t.x][t.y];
a[t.x][t.y] = tmp&((1<<4)-1);
for(int i = 0;i < 4; i++) {
bool ca = (tmp>>(i+4)) & 1;
int tx = t.x+dir[i][0], ty = t.y+dir[i][1];
if(tx >= 1 && tx <= NUM && ty >= 1 && ty <= NUM) {
if(!ca && !vis[tx][ty]) {
vis[tx][ty] = true;
p[tx][ty] = tag;
q.push((PP){tx, ty});
}
}
}
}
}
inline int encode(int a, int b, int c) {
return a*81+b*9+c+1;
}
inline void decode(int code, int &a, int &b, int &c) {
code--;
a = code/81; code %= 81;
b = code/9; code %= 9;
c = code;
}
void putres() {
int d = dlx.ansd;
int t, p, c;
for(int i = 0;i < d; i++) {
decode(dlx.real[i], t, p, c);
t++, p++, c++;
if(a[t][p] != 0 && c != a[t][p]) while(1);
a[t][p] = c;
}
for(int i = 1;i <= NUM; i++) {
for(int j = 1;j <= NUM; j++)
printf("%d", a[i][j]);
puts("");
}
}
void solve() {
vector <int> col;
for(int r = 1;r <= NUM; r++)
for(int c = 1;c <= NUM; c++)
for(int v = 1;v <= 9; v++) {
if(a[r][c] == 0 || a[r][c] == v) {
col.clear();
col.push_back(encode(SLOT, r-1, c-1));
col.push_back(encode(ROW, r-1, v-1));
col.push_back(encode(COL, c-1, v-1));
col.push_back(encode(SUB, p[r][c], v-1));
dlx.addRow(encode(r-1, c-1, v-1), col);
}
}
int res = dlx.solve();
if(res == 0)
puts("No solution");
else if(res == 2)
puts("Multiple Solutions");
else putres();
}
int main() {
int T, cas = 0;
scanf("%d", &T);
while(T--) {
init();
dlx.init(324); //4*NUM*NUM;
for(int i = 1;i <= NUM; i++)
for(int j = 1;j <= NUM; j++)
scanf("%d", &a[i][j]);
int cnt = 0; // connecting-sub number, index base 0;
for(int i = 1;i <= NUM; i++)
for(int j = 1;j <= NUM; j++)
if(!vis[i][j]) bfs(i, j, cnt++);
printf("Case %d:\n", ++cas);
solve();
}
return 0;
}