HDU 4069 Squiggly Sudoku DLX 精确覆盖

题意:

数独问题,给你9个连通块,每个连通块有9个位置。

现在已经有一些数字在上面,让你在空的位置上放数字。

问你是否存在方案,使得每个连通块包含1~9,并且每行每列都有1~9的数字。

输出结果参照样例。


思路:

题中并没有直接给出数独的情况,而是给了一个数值,里面包含了连通块以及是否有数字在该位置的信息。

首先根据所给的数值,bfs把每个连通块都找出来,然后编号。

剩下的,就是套个DLX的模板。(这题和lrj的大白书P410基本一样,可以去参考一下)。


code:

#include <bits/stdc++.h>
using namespace std;

const int N = 12;
const int NUM = 9;
typedef long long LL;

struct DLX {
    static const int N = 1e4+5;
    static const int MAXROW = 3005;
    int n, sz;
    int anscnt, ans[MAXROW], ansd;
    int S[N];

    int row[N], col[N];
    int real[MAXROW];
    int L[N], R[N], U[N], D[N];

    void init(int n) {
        this->n = n;
        for(int i = 0;i <= n; i++)
            U[i] = i, D[i] = i, L[i] = i-1, R[i] = i+1;
        R[n] = 0; L[0] = n;
        
        sz = n+1;
        anscnt = 0;
        memset(S, 0, sizeof(S));
    }
    void addRow(int r, vector <int>& columns) {
        int first = sz;
        for(int i = 0;i < columns.size(); i++) {
            int c = columns[i];
            L[sz] = sz-1;R[sz] = sz+1; D[sz] = c; U[sz] = U[c];
            D[U[c]] = sz; U[c] = sz;
            row[sz] = r; col[sz] = c;
            S[c]++; sz++;
        }
        R[sz-1] = first; L[first] = sz-1;
    }
    void remove(int c) {
        L[R[c]] = L[c];
        R[L[c]] = R[c];
        for(int i = D[c];i != c; i = D[i]) 
            for(int j = R[i];j != i; j = R[j]) {
                U[D[j]] = U[j];
                D[U[j]] = D[j];
                --S[col[j]];
            }
    }
    void restore(int c) {
        for(int i = U[c]; i != c; i = U[i]) {
            for(int j = L[i];j != i; j = L[j]) {
                S[col[j]]++;
                U[D[j]] = j;
                D[U[j]] = j;
            }
        }
        L[R[c]] = c;
        R[L[c]] = c;
    }
    bool dfs(int d) {
        if(R[0] == 0) {
            anscnt++; ansd = d;
            for(int i = 0;i < d; i++)
                real[i] = ans[i];
            if(anscnt == 2) return true;
            else return false;
        }
        int c = R[0];
        for(int i = R[0]; i != 0; i = R[i])
            if(S[i] < S[c]) c = i;

        remove(c);
        for(int i = D[c];i != c; i = D[i]) {
            ans[d] = row[i];
            for(int j = R[i];j != i; j = R[j])
                remove(col[j]);
            if(dfs(d+1)) return true;
            for(int j = L[i];j != i; j = L[j])
                restore(col[j]);
        }
        restore(c);
        return false;
    }
    int solve() {
        dfs(0);
        return anscnt;
    }
}dlx;

int a[N][N], p[N][N];
bool vis[N][N];
int dir[4][2] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};

const int SLOT = 0;
const int ROW = 1;
const int COL = 2;
const int SUB = 3;

void init() {
    memset(vis, false, sizeof(vis));
}

struct PP {
    int x, y;
};
queue <PP> q;
void bfs(int s, int e, int tag) {
    q.push((PP){s, e});
    vis[s][e] = true;
    p[s][e] = tag;
    while(!q.empty()) {
        PP t = q.front(); q.pop();
        int tmp = a[t.x][t.y];
        a[t.x][t.y] = tmp&((1<<4)-1);
        for(int i = 0;i < 4; i++) {
            bool ca = (tmp>>(i+4)) & 1;
            int tx = t.x+dir[i][0], ty = t.y+dir[i][1];
            if(tx >= 1 && tx <= NUM && ty >= 1 && ty <= NUM) {
                if(!ca && !vis[tx][ty]) {
                    vis[tx][ty] = true;
                    p[tx][ty] = tag;
                    q.push((PP){tx, ty});
                }
            }
        }
    }
}

inline int encode(int a, int b, int c) {
    return a*81+b*9+c+1;
}
inline void decode(int code, int &a, int &b, int &c) {
    code--;
    a = code/81; code %= 81;
    b = code/9; code %= 9;
    c = code;
}

void putres() {
    int d = dlx.ansd;
    int t, p, c;
    for(int i = 0;i < d; i++) {
        decode(dlx.real[i], t, p, c);
        t++, p++, c++;
        if(a[t][p] != 0 && c != a[t][p]) while(1);
        a[t][p] = c;
    }
    for(int i = 1;i <= NUM; i++) {
        for(int j = 1;j <= NUM; j++)
            printf("%d", a[i][j]);
        puts("");
    }
}
        
void solve() {
    vector <int> col;
    for(int r = 1;r <= NUM; r++) 
        for(int c = 1;c <= NUM; c++) 
            for(int v = 1;v <= 9; v++) {
                if(a[r][c] == 0 || a[r][c] == v) {
                    col.clear();
                    col.push_back(encode(SLOT, r-1, c-1));
                    col.push_back(encode(ROW, r-1, v-1));
                    col.push_back(encode(COL, c-1, v-1));
                    col.push_back(encode(SUB, p[r][c], v-1));
                    dlx.addRow(encode(r-1, c-1, v-1), col);
                }
            }

    int res = dlx.solve();
    if(res == 0) 
        puts("No solution");
    else if(res == 2)
        puts("Multiple Solutions");
    else putres();
}
    
int main() {
    int T, cas = 0;
    scanf("%d", &T);
    while(T--) {
        init();
        dlx.init(324); //4*NUM*NUM;
        for(int i = 1;i <= NUM; i++) 
            for(int j = 1;j <= NUM; j++)
                scanf("%d", &a[i][j]);

        int cnt = 0; // connecting-sub number, index base 0;
        for(int i = 1;i <= NUM; i++)
            for(int j = 1;j <= NUM; j++)
                if(!vis[i][j]) bfs(i, j, cnt++);
        printf("Case %d:\n", ++cas);
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值