hdu 5325 Crazy Bobo 拓扑排序

题意:

给你一棵树,每个节点上都有一个权值。

让你找到一个连通的节点集合,使得根据节点权值升序排序后,第i个节点到第i+1个节点所经过的其它节点权值都小于第i个节点的权值。

问你这样的集合最大的size。


思路:

比较朴素的思路:枚举以每个节点作为根,进行dfs搜寻所有比父亲节点权值大的节点个数,复杂度n^2。如果我们开一个数组保存之前已经统计过的节点个数,则复杂度降为O(n)。

赛中我们队是dfs开栈交c++过的,但实际这并非正解。

后来问过出题人,杭电的栈虽小,但若可以使用开栈代码,则内存有多大就可以开多大。50万正常来说是承受不了的,普通正常赛事中栈深大概就26万。

正解:拓扑排序。根据输入建边,权值大的指向权值小的。


code1(拓扑排序、正解):

//#pragma comment(linker, "/STACK:1024000000,1024000000") 
#include <bits/stdc++.h>
using namespace std;

const int N = 5e5+5;
typedef long long LL;

int n;
int w[N];
int cnt[N];
int ind[N];
vector <int> edge[N];

void solve() {
    fill(cnt+1, cnt+n+1, 1);
    queue <int> q;
    for(int i = 1;i <= n; i++)
        if(ind[i] == 0) q.push(i);
    while(!q.empty()) {
        int u = q.front(); q.pop();
        for(auto &v:edge[u]) {
            //if(w[i] < w[u]) continue;
            cnt[v] += cnt[u];
            if(--ind[v] == 0) q.push(v);
        }
    }
    int res = 0;
    for(int i = 1;i <= n; i++) res = max(res, cnt[i]);
    printf("%d\n", res);
}

int main() {
    while(scanf("%d", &n) != EOF) {
        fill(edge+1, edge+n+1, vector <int>());
        fill(ind+1, ind+n+1, 0);
        for(int i = 1;i <= n; i++) scanf("%d", &w[i]);
        for(int i = 1;i <= n-1; i++) {
            int u, v;
            scanf("%d%d", &u, &v);
            if(w[u] < w[v]) swap(u, v);
            edge[u].push_back(v);
            ind[v]++;
        }
        solve();
    }
    return 0;
}


code2(dfs、非正解):

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#pragma comment(linker, "/STACK:1024000000,1024000000") 
using namespace std;

const int N = 5e5+5;
typedef long long LL;

int n;
int a[N];
int cnt[N];
bool vis[N];
vector <int> edge[N];
int dfs(int u, int p) {
    int ret = 0;
    vis[u] = true;
    for(auto &v : edge[u]) {
        if(v == p) continue;
        if(a[v] < a[u]) continue;
        if(vis[v]) ret += cnt[v];
        else ret += dfs(v, u);
    }
    cnt[u] = ret+1;
    return ret+1;
}
void solve() {
    int res = 0;
    for(int i = 1;i <= n; i++){
        if(vis[i]) res = max(res, cnt[i]);
        else res = max(res, dfs(i, -1));
    }
    printf("%d\n", res);
}
    
int main() {
    while(scanf("%d", &n) != EOF) {
        for(int i = 1;i <= n; i++){
            edge[i].clear();
            vis[i] = false;
            cnt[i] = 0;
        }
        for(int i = 1;i <= n; i++) scanf("%d", &a[i]);
        for(int i = 1;i <= n-1; i++) {
            int u, v;
            scanf("%d%d", &u, &v);
            edge[u].push_back(v);
            edge[v].push_back(u);
        }
        solve();
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值