监督学习
文章平均质量分 71
暗狼之殇
目前正在转型人工智能
展开
-
分类算法的评价指标
概述近日学习分类算法时,例如,SVM、KNN和LR等时,一直苦于不知道如何很好的评价训练出来模型的好坏,在查看了大量的网上资料以及机器学习相关的书籍之后,基本明确了在分类算法中常用的评价指标以及相关指标的Python代码实现,闲话说到这,现在简单的对这些评价指标逐步说明一下。概念在机器学习分类算法中,用来对分类算法评价的指标有:准确率(accuracy)、召回率(recall)、精准率(preci...原创 2018-06-13 22:19:03 · 2064 阅读 · 0 评论 -
回归算法 - 评价指标
方差(variance):描述预测值P的变化范围、离散程度,是预测值的方差,也就是离期望值E的距离;方差越大,数据的分布也就越分散概率论中,方差用来度量随机变量和起数学期望之间的偏离程度;统计学中,方差是各个数据分别与其平均数之差的平方的和的平均数;方差度量同样大小的训练集的变动所导致的学习性能的变化,刻画了数据扰动所来到了影响;偏差(bias):描述预测值的期望E与真实值Y之间的差距;偏差越大,...原创 2018-06-22 15:21:50 · 5133 阅读 · 0 评论 -
最小二乘法
基本概念最小二乘法又称最小平方法,是一种数学优化方法,是求解机器学习算法的模型参数的常用方法之一通过最小化误差的平方和寻找数据的最佳函数的参数;利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际的数据之间的误差平方和为最小最小二乘法还可以用于曲线拟合所谓二乘,其实可以理解为平方,所以又称为最小平方法。推导得到了a,求b,由b的推导公式,可知:这样就求出了a和b的值;python代码...原创 2018-07-12 11:13:06 · 308 阅读 · 0 评论 -
支持向量机-SVM
概念将训练数据集非线性的映射到一个高维特征空间,这个非线性映射的目的是把输入空间中线性不可分数据集映射到高维特征空间后,变成线性可分的数据集,随后在特征空间建立一个具有最大间隔距离的最优分离超平面,这也相当于在输入空间产生一个最优非线性决策边界;问题定义:找到最大化的平面间隔举例以2维平面为例,若需要找到一条直线y=wx+b,将物品很好的分为两个不同的类别,如下图:即需要找...原创 2018-08-01 16:05:08 · 316 阅读 · 0 评论 -
逻辑回归-logistic regression
一、概念逻辑回归是一种广义线性回归,与多重线性回归模型有很多的相似之处,例如它们的模型形式基本相同,都为wx+b,区别在于因变量不同;多重线性模型直接使用wx+b作为因变量,而逻辑回归会引入sigmoid函数将wx+b映射到一个0~1之间的状态;逻辑回归虽然是广义线性回归,但是是一个分类模型;二、关联函数1、sigmoid函数sigmoid函数的数学表达式为:在数值上有以下...原创 2018-08-03 15:51:46 · 307 阅读 · 0 评论 -
R-CNN、Fast R-CNN、Faster R-CNN演化
一、目标检测目标检测的任务是找出图像中所有感兴趣的目标(物体),确定它们的位置和大小,是机器视觉领域的核心问题之一。由于各类物体有不同的外观,形状,姿态,加上成像时光照,遮挡等因素的干扰,目标检测一直是机器视觉领域最具有挑战性的问题。计算机视觉中关于图像识别有四大类任务:分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。...原创 2018-08-31 11:34:01 · 779 阅读 · 0 评论