机器学习
文章平均质量分 94
我爱玩泥巴
这个作者很懒,什么都没留下…
展开
-
机器学习算法-线性回归
这里写目录标题线性回归概念1、线性回归的原理2、线性回归的假设函数3、线性回归损失函数、代价函数、目标函数4、优化方法(梯度下降法、牛顿法、拟牛顿法等)5、线性回归的评估指标代码实战6、sklearn参数详解 线性回归概念 1、线性回归的原理 先解释下回归: 当我们试图预测的目标变量是连续的,比如在我们的住房例子中,我们把学习问题称为回归问题。 当y只能接受少量的离散值时(比如,如果考虑到居住面积,我们想要预测一个住宅是房子还是公寓),我们称之为分类问题 如果你的朋友想要卖房子,让你帮忙预估以下可以卖多转载 2021-03-26 15:15:04 · 364 阅读 · 0 评论 -
模型搭建与评估
这里写目录标题1、模型搭建-建模1.1 导包1.2 读入数据集1.3 模型搭建1.3.1 切割训练集和测试集1.4 输出模型预测结果2、模型搭建-评估 1、模型搭建-建模 我们拥有的泰坦尼克号的数据集,那么我们这次的目的就是,完成泰坦尼克号存活预测这个任务。 1.1 导包 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from IPython.display impo原创 2020-08-27 15:31:52 · 982 阅读 · 1 评论 -
特征工程
https://www.cnblogs.com/jasonfreak/p/5448385.html转载 2019-09-10 15:43:35 · 147 阅读 · 0 评论