
机器学习
文章平均质量分 94
HuFeiHu-Blog
知无涯者,虚心若愚,求知若饥,勇者天佑!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
常用主页链接(计算机视觉、模式识别、机器学习相关方向,陆续更新。。。。)
常用牛人主页链接(计算机视觉、模式识别、机器学习相关方向,陆续更新。。。。)牛人主页(主页有很多论文代码)Serge Belongie at UC San DiegoAntonio Torralba at MITAlexei Ffros at CMUCe Liu at Microsoft Research New EnglandVittorio Ferrari at Uni转载 2016-11-20 08:12:07 · 1208 阅读 · 0 评论 -
常见的几种最优化方法
阅读目录1. 梯度下降法(Gradient Descent)2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)3. 共轭梯度法(Conjugate Gradient)4. 启发式优化方法 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都转载 2016-12-03 13:36:30 · 9872 阅读 · 0 评论 -
深度学习应用大盘点
当首次介绍深度学习时,我们认为它是一个要比机器学习更好的分类器。或者,我们亦理解成大脑神经计算。第一种理解大大低估了深度学习构建应用的种类,而后者又高估了它的能力,因而忽略了那些不是一般人工智能应用的更现实和务实的应用。最好最自然的理解应该是从人机交互角度来看待深度学习应用。深度学习系统似乎具备近似于生物大脑的能力,因此,它们可以非常高效地应用于增强人类或者动物已经可以执行的任务上。此外,转载 2016-11-21 16:48:27 · 646 阅读 · 0 评论 -
数据降维工具箱drtoolbox
这里有两个这个工具箱的简单介绍:【Matlab】数据降维工具箱drtoolboxhttp://blog.csdn.net/xiaowei_cqu/article/details/7515077【Dimensionality Reduction】数据降维方法分类http://blog.csdn.net/xiaowei_cqu/article/details/7522368转载 2016-12-03 15:35:48 · 2813 阅读 · 1 评论 -
谱聚类算法及其代码(Spectral Clustering)
本文转自:http://blog.csdn.net/liu1194397014/article/details/52990015简介文章将介绍谱聚类(spectral clustering)的基本算法,以及在matlab下的代码实现。介绍内容将包括:从图分割角度直观理解谱聚类谱聚类算法步骤数据以及实现代码本文将不会涉及细节化的证明和推导,如有兴趣可参考july大神的文章从拉转载 2016-12-03 16:31:38 · 4197 阅读 · 1 评论 -
机器学习数据挖掘-软件、网站、课程资源知识点汇总
以下文章转载自:http://blog.csdn.NET/zouxy09/article/details/8102252 ,感谢原作者!!!机器学习知识点学习zouxy09@qq.comhttp://blog.csdn.net/zouxy09 在学习机器学习的有关知识时,搜索到JerryLead的cnblog中的Machine Le转载 2016-11-22 17:02:30 · 1270 阅读 · 0 评论 -
诠释数据降维算法:一文讲尽t-分布邻域嵌入算法(t-SNE)如何有效利用
摘要: t-分布领域嵌入算法(t-SNE, t-distributed Stochastic Neighbor Embedding )是目前一个非常流行的对高维度数据进行降维的算法, 由Laurens van der Maaten和 Geoffrey Hinton于2008年提出。这个算法已经在机器学习领域(文中所有截图,都有华丽的动态效果,详情请点击原文:http://distill转载 2016-11-26 12:42:55 · 5809 阅读 · 0 评论 -
从拉普拉斯矩阵说到谱聚类
从拉普拉斯矩阵说到谱聚类本文转自:http://blog.csdn.net/v_july_v/article/details/407382111 矩阵基础 在讲谱聚类之前,有必要了解一些矩阵方面的基础知识。1.0 理解矩阵的12点数学笔记 如果对矩阵的概念已经模糊,推荐国内一人写的《理解矩阵by孟岩》系列,其中,抛出了很多有趣的观点,我之前在阅读的过程中做了些笔转载 2016-12-03 12:54:01 · 638 阅读 · 0 评论 -
谱聚类算法(Spectral Clustering)优化与扩展
谱聚类(Spectral Clustering, SC)在前面的博文中已经详述,是一种基于图论的聚类方法,简单形象且理论基础充分,在社交网络中广泛应用。本文将讲述进一步扩展其应用场景:首先是User-Item协同聚类,即spectral coclustering,之后再详述谱聚类的进一步优化。1 Spectral Coclustering1.1 协同聚类(Coclustering)转载 2016-12-03 12:51:38 · 1418 阅读 · 0 评论 -
谱聚类算法(Spectral Clustering)
文章转自:http://www.cnblogs.com/sparkwen/p/3155850.html 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest c转载 2016-12-03 12:49:53 · 3739 阅读 · 0 评论 -
机器学习,模式识别,数据挖掘常用链接
国际顶级会议AAAICIKM 2010CIKM 2011COLT 2010COLT 2011Computer Vision ResourceICJIAICMLNIPSSIGIR 2010SIGIR 2011SIGKDDSIGKDD2010论文搜索CV顶级会议论文下载google 学术搜索超全计算机视觉资源汇总联合参转载 2016-11-20 08:16:54 · 525 阅读 · 0 评论 -
机器学习方便查询用
Bookmarks书签栏技术文章cppreference.comReference - C++ ReferenceLaTeXStudioprobml/pmtk3 · GitHub深入理解SVM之对偶问题 - 王国龙_成长的个人页面 - 开源中国社区scikit-learn: machine learning in Python — scikit-learn v0.11转载 2016-11-20 08:23:14 · 609 阅读 · 0 评论 -
机器学习论文资源
国际顶级会议AAAICIKM 2010CIKM 2011COLT 2010COLT 2011Computer Vision ResourceICJIAICMLNIPSSIGIR 2010SIGIR 2011SIGKDDSIGKDD2010论文搜索CV顶级会议论文下载google 学术搜索超全计算机视觉资源汇总联合参考文献学术牛人主页feifei li -comput转载 2016-11-20 08:24:19 · 357 阅读 · 0 评论 -
开源机器学习软件
今天给大家介绍一下经典的开源机器学习软件:编程语言:搞实验个人认为当然matlab最灵活了(但是正版很贵),但是更为前途的是Python(numpy+scipy+matplotlib)和C/C++,这样组合既可搞研究,也可搞商业开发,易用性不比matlab差,功能组合更为强大,个人认为,当然R和Java也不错.1.机器学习开源软件网(收录了各种机器学习的各种编程语言学术与商业的开源软件)转载 2016-11-20 08:25:10 · 424 阅读 · 0 评论 -
北美+德国18名校的数据挖掘、数据分析、人工智能及机器学习课程资源汇总
[+]QuoraWhat is Data Science?How do I become a Data Scientist?How does Data Science differ from traditional statistical analysis?Related CoursesConcepts in Computing with Data, Berkele转载 2016-11-20 08:28:33 · 1462 阅读 · 0 评论 -
和机器学习和计算机视觉相关的数学
1. 线性代数 (Linear Algebra):我想国内的大学生都会学过这门课程,但是,未必每一位老师都能贯彻它的精要。这门学科对于Learning是必备的基础,对它的透彻掌握是必不可少的。我在科大一年级的时候就学习了这门课,后来到了香港后,又重新把线性代数读了一遍,所读的是Introduction to Linear Algebra (3rd Ed.) by Gilber转载 2016-11-20 08:30:41 · 449 阅读 · 0 评论 -
机器学习常见算法分类汇总
机器学习常见算法分类汇总 2016-11-08 算法与数学之美原文出处:IT经理网 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。本文为您总结一下常见的机器学习算法,以供您在工作和学习中参考。机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍转载 2016-11-26 13:00:22 · 992 阅读 · 0 评论 -
机器学习资源大全中文版
我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理。awesome-machine-learning 就是 josephmisiti 发起维护的机器学习资源列表,内容包括了机器学习领域的框架、库以及软件(按编程语言排序)。Awesome 系列虽然挺全,但基本只对收录的资源做了极为简要的介绍,如果有更详细的中文介绍,对相应开发者的帮助会更大。这也是我们发起转载 2016-11-26 13:01:24 · 1421 阅读 · 0 评论 -
流形学习
流形学习(manifold learning)的一些综述流形学习(manifold learning)的一些综述讨论与进展 issue 26 https://github.com/memect/hao/issues/26Introductionhttp://blog.sina.com.cn/s/blog_eccca60e0101h1d6.html @cmdyz 流形学习 (Ma转载 2016-11-26 21:22:27 · 784 阅读 · 0 评论 -
25个Java机器学习工具&库
本列表总结了25个Java机器学习工具&库:1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。Weka包括一系列的工具,如数据预处理、分类、回归、聚类、关联规则以及可视化。2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区。它包括一系列的机器学习算法(分类、回归转载 2017-01-05 18:27:44 · 432 阅读 · 0 评论 -
Java机器学习软件介绍
编写程序是最好的学习机器学习的方法。你可以从头开始编写算法,但是如果你要取得更多的进展,建议你采用现有的开源库。在这篇文章中你会发现有关Java中机器学习的主要平台和开放源码库包。环境本节描述可用于机器学习的java环境或工作台。他们被称为环境,因为他们为执行机器学习任务提供了图形用户界面,但也提供了Javaapi供使用者开发自己的应用程序。WekaWaikat转载 2017-01-05 19:16:07 · 760 阅读 · 0 评论 -
史上最全的机器学习资料
摘要: 机器学习牵涉的编程语言十分之广,包括了MATLAB、Python、Clojure、Ruby等等。为了让开发者更加广泛、深入地了解机器学习,云栖社区组织翻译了GitHub Awesome Machine Learning 资源,涵盖24种编程语言的机器学习的框架、库以及其他相关资料。机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、转载 2017-01-05 19:20:56 · 6069 阅读 · 0 评论 -
数据挖掘学习清单
基础篇矩阵背后的现实意义概率分布无约束最优化方法拉格朗日乘子法和KKT条件推荐相关性检验协同过滤推荐算法分类朴素贝叶斯LRSVM聚类KMeansDBScanCHAMELEONGMM决策树ID3C4.5AdaboostGBDT关联规则挖掘AprioriFP-Tree序列标记HMM1HMM2转载 2016-12-20 09:58:39 · 387 阅读 · 0 评论 -
Mahout源码分析之 -- 文档向量化TF-IDF
Mahout之SparseVectorsFromSequenceFiles源码分析一、原理TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或转载 2017-06-04 18:36:44 · 651 阅读 · 0 评论 -
两篇文章相似度:TF-IDF与余弦相似性的应用
TF-IDF与余弦相似性的应用(一):自动提取关键词作者: 阮一峰日期: 2013年3月15日这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题。有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加以人工干预,请问怎样才能正确做到?这个问题涉及转载 2017-06-01 21:58:54 · 1601 阅读 · 0 评论 -
java Socket 使用通用json包 发送 json对象
在使用json进行socket进行通信中,由于服务器使用的json 和 客户端使用的json版本不同,因此改用通用的json包来通信。引入的包为 org.json,jar 可以通用,而且不必使用其他的一些需要引入的其他json依赖包文章中的例子是将一张图片发送到服务器端,服务器端收到信息之后返回给客户端是否接受成功的信息这里贴出客户端与服务器端的代码客户端:转载 2017-06-01 22:49:06 · 4088 阅读 · 0 评论 -
模式识别十一--分类回归决策树CART的研究与实现
文章转自:http://www.kancloud.cn/digest/prandmethod/102853摘 要:本实验的目的是学习和掌握分类回归树算法。CART提供一种通用的树生长框架,它可以实例化为各种各样不同的判定树。CART算法采用一种二分递归分割的技术,将当前的样本集分为两个子样本集,使得生成的决策树的每个非叶子节点都有两个分支。因此,CART算法生成的决策树是结构简洁的二叉树。在M转载 2016-11-26 19:40:16 · 1209 阅读 · 0 评论 -
模式识别十--k-均值聚类算法的研究与实现
本实验的目的是学习和掌握k-均值聚类算法。k-均值算法是一种经典的无监督聚类和学习算法,它属于迭代优化算法的范畴。本实验在MATLAB平台上,编程实现了k-均值聚类算法,并使用20组三维数据进行测试,比较分类结果。实验中初始聚类中心由人为设定,以便于实验结果的比较与分析。一、技术论述1.无监督学习和聚类在之前设计分类器的时候,通常需要事先对训练样本集的样本进行标定以确定类别归属。这种利转载 2016-11-26 19:38:06 · 1179 阅读 · 0 评论 -
模式识别九--模拟退火算法的设计与实现
本文转自:http://www.kancloud.cn/digest/prandmethod/102851 本节的目的是记录以下学习和掌握模拟退火(Simulated Annealing,简称SA算法)过程。模拟退火算法是一种通用概率算法,用来在一个大的搜寻空间内寻找命题的最优解。这里分别使用随机模拟退火算法和确定性模拟退火算法,在MATLAB平台上进行编程,以寻找一个6-单转载 2016-11-26 19:37:15 · 7994 阅读 · 0 评论 -
模式识别三--MATLAB实现贝叶斯分类器
文章转自:http://www.kancloud.cn/digest/prandmethod/102845贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化,它遵循“多数占优”这一基本原则。一、分类器的基本概念经过了一个阶段的模式识转载 2016-11-26 19:23:51 · 21566 阅读 · 0 评论 -
模式识别二--分类器的性能评价
文章转自:http://www.kancloud.cn/digest/prandmethod/102844模式识别:分类器的性能评价最近开始了模式识别的学习,对模式和模式类的概念有一个基本的了解,并使用MATLAB实现一些模式类的生成。而接下来如何对这些模式进行分类成为了学习的第二个重点。我们都知道,一个典型的模式识别系统是由特征提取和模式分类两个阶段组成的,而其中模式分类转载 2016-11-26 19:21:54 · 1661 阅读 · 0 评论 -
模式识别一--利用MATLAB生成模式类
最近开始了模式识别的学习,在此之前需要对模式和模式类的概念有一个了解,这里使用MATLAB实现一些模式类的生成。在此之前,引用百科上对于模式识别和模式类的定义,也算加深以下了解:模式识别(Pattern Recognition):人类在日常生活的每个环节,从事着模式识别的活动。可以说每个有正常思维的人,在他没有入睡时都在进行模式识别的活动。坐公共汽车找汽车站,骑车判别可行进道路,对观察到的转载 2016-11-26 19:17:41 · 8994 阅读 · 1 评论 -
模式识别四--最大似然估计与贝叶斯估计方法
文章转自:http://www.kancloud.cn/digest/prandmethod/102846 之前学习了贝叶斯分类器的构造和使用,其中核心的部分是得到事件的先验概率并计算出后验概率 ,而事实上在实际使用中,很多时候无法得到这些完整的信息,因此我们需要使用另外一个重要的工具——参数估计。参数估计是在已知系统模型结构时,用系统的输入和输出数据计算系统模型参数的过转载 2016-11-26 19:29:12 · 7309 阅读 · 0 评论 -
模式识别五--PCA主分量分析与Fisher线性判别
文章转自:http://www.kancloud.cn/digest/prandmethod/102847 本实验的目的是学习和掌握PCA主分量分析方法和Fisher线性判别方法。首先了解PCA主分量分析方法的基本概念,理解利用PCA 分析可以对数据集合在特征空间进行平移和旋转。实验的第二部分是学习和掌握Fisher线性判别方法。了解Fisher线性判别方法找的最优方向与非最转载 2016-11-26 19:30:39 · 2494 阅读 · 0 评论 -
模式识别六--感知器的实现
文章转自:http://www.kancloud.cn/digest/prandmethod/102848 在之前的模式识别研究中,判别函数J(.)的参数是已知的,即假设概率密度函数的参数形式已知。本节不考虑概率密度函数的确切形式,使用非参数化的方法来求解判别函数。由于线性判别函数具有许多优良的特性,因此这里我们只考虑以下形式的判别函数:它们或者是x的各个分量的线性函数,或者转载 2016-11-26 19:31:57 · 1730 阅读 · 0 评论 -
模式识别七--非参数估计法之Parzen窗估计和k
文章转自:http://www.kancloud.cn/digest/prandmethod/102849 本实验的目的是学习Parzen窗估计和k最近邻估计方法。在之前的模式识别研究中,我们假设概率密度函数的参数形式已知,即判别函数J(.)的参数是已知的。本节使用非参数化的方法来处理任意形式的概率分布而不必事先考虑概率密度的参数形式。在模式识别中有躲在令人感兴趣的非参数化方法转载 2016-11-26 19:33:54 · 4310 阅读 · 2 评论 -
模式识别八--三层BP神经网络的设计与实现
本文的目的是学习和掌握BP神经网络的原理及其学习算法。在MATLAB平台上编程构造一个3-3-1型的singmoid人工神经网络,并使用随机反向传播算法和成批反向传播算法来训练这个网络,这里设置不同的初始权值,研究算法的学习曲线和训练误差。有了以上的理论基础,最后将构造并训练一个3-3-4型的神经网络来分类4个等概率的三维数据集合。一、技术论述1.神经网络简述神经网络是一种可以适应复杂转载 2016-11-26 19:35:01 · 4309 阅读 · 0 评论 -
大数据工程师修炼笔记
想要成为大数据工程师?你需要掌握以下知识(上) 文|林肯公园(拒绝任何不标明来源的转载)国际数据公司IDC预测,到2020年,企业基于大数据计算分析平台的支出将突破5000亿美元,大数据解决方案在未来四年中,帮助全球企业分享大约1.6万亿美元新增收入的数据红利。数联寻英近日发布的首份《大数据人才报告》显示,目前全国大数据人才只有46万,未来3到5年人才缺口达150万之多。根据麦转载 2016-11-05 13:46:11 · 3800 阅读 · 0 评论 -
诠释数据降维算法:一文讲尽t-分布邻域嵌入算法(t-SNE)如何有效利用
摘要: t-分布领域嵌入算法(t-SNE, t-distributed Stochastic Neighbor Embedding )是目前一个非常流行的对高维度数据进行降维的算法, 由Laurens van der Maaten和 Geoffrey Hinton于2008年提出。这个算法已经在机器学习领域(文中所有截图,都有华丽的动态效果,详情请点击原文:http://distill转载 2016-11-13 12:54:45 · 1400 阅读 · 0 评论 -
机器学习相关知识
机器学习相关知识写在前面的话保持怀疑的态度(在全新的数据集上测试分类器)天下没有免费的午餐(没有适用的最好学习方法,具体问题具体对待)正确对待缺失值,不同参数的设置可能会对结果产生不同的影响不同算法都有对应的假设数据挖掘的结果总会误导人,保持求真的态度数据类型连续型离散型标称型概念离散化归一化正则化度量指标欧几里得距离以R为实数域,对转载 2016-11-13 13:20:32 · 329 阅读 · 0 评论