【lightgbm/xgboost/nn代码整理二】xgboost做二分类,多分类以及回归任务

【lightgbm/xgboost/nn代码整理二】xgboost做二分类,多分类以及回归任务

浏览更多内容,可访问:http://www.growai.cn

1.简介

该部分是代码整理的第二部分,为了方便一些初学者调试代码,作者已将该部分代码打包成一个工程文件,包含简单的数据处理、xgboost配置、五折交叉训练和模型特征重要性打印四个部分。数据处理部分参考:代码整理一,这里只介绍不同的部分。本文主要是介绍一些重点的参数部分,一是方便自己以后再次查询,也希望帮助一些初学者快速的使用该项目,应用到自己的工程或者比赛中。如果只是想要阅读代码,可直接移步到尾部链接。

2. 数据处理

data = pd.concat([train_data, test_data])
cate_feature = ['gender', 'cell_province', 'id_province', 'id_city', 'rate', 'term']
for item in cate_feature:
    data[item] = LabelEncoder().fit_transform(data[item])
    item_dummies = pd.get_dummies(data[item])
    item_dummies.columns = [item + str(i + 1) for i in range(item_dummies.shape[1])]
    data = pd.concat([data, item_dummies], axis=1)
data.drop(cate_feature,axis=1,inplace=True)

该部分在lightgbm中只进行了labelEncoder编码处理,然后通过categorical_feature变量处理,在lightgbm中使用了类别特征的最优切分进行了处理,具体详情参考:柯国霖大佬的回答。xgboost中没有对类别特征做处理,这里对其进行了onehot编码处理。而在工程中,如果类别过多,我一般会放弃进行onehot,主要是由于进行onehot会导致特征过于稀疏,运算速度变慢,严重影响模型的迭代速度,并且最终对结果提升很有限,我通常只会进行labelEncoder, 也可以对特征进行embeding处理。

3.模型

3.1 参数

和lightgbm一样,xgboost也是使用key-value字典的方式存储参数,下面给出的事二分类的参数

params = {
    'booster': 'gbtree',
    'objective': 'binary:logistic',
    'eval_metric': 'auc',
    'gamma': 0.1,
    'max_depth': 8,
    'alpha': 0,
    'lambda': 0,
    'subsample': 0.7,
    'colsample_bytree': 0.5,
    'min_child_weight': 3,
    'silent': 0,
    'eta': 0.03,
    'nthread': -1,
    'seed': 2019,
}
  • objective:目标函数
    • 二分类:常用的是binary:logistic
    • 多分类:multi:softmax,当是多分类任务时需要指定类别数量,eg:'num_class':33;
    • 回归任务:reg:linear
  • eval_metric:评价函数,如果该参数没有指定,缺省值是通过目标函数来做匹配,
    • 二分类:常用auclogloss
    • 多分类:mlogloss
    • 回归任务:均方误差:mse,均方根误差:rmse, 平均绝对值误差:mae
  • gamma:用于控制是否后剪枝的参数,越大越保守,一般0.1、0.2这样子
  • max_depth:树的深度,对结果影响较大,越深越容易过拟合
  • alpha:L1正则,树的深度过大时,可以适大该参数
  • lambda:L2正则
  • subsample:随机采样的比率,通俗理解就是选多少样本做为训练集,选择小于1的比例可以减少方差,即防止过拟合
  • colsample_bytree:这里是选择多少列作为训练集,具体的理解就是选择多少特征
  • min_child_weight:决定最小叶子节点样本权重和。当它的值较大时,可以避免模型学习到局部的特殊样本。但如果这个值过高,会导致欠拟合
  • eta:学习率
  • silent: 是否打印训练过程中的信息,0表示打印,1反之
  • nthread:运行的线程数,-1所有线程,该值需要根据具体情况调整,线程对最终结果有一点影响,曾今测试,线程越多,结果会变差一丢丢
  • seed:这个随机指定一个常数,防止每次结果不一致

3.2 五折交叉

folds = KFold(n_splits=5, shuffle=True, random_state=2019)

采用五折交叉统计实际就是训练多个模型和平均值融合,如果时间允许的情况下10折交叉会好于5折。5折交叉还可以采用StratifiedKFold做切分。

3.3 数据加载

XGBoost可以加载多种数据格式的训练数据:libsvm 格式的文本数据、Numpy 的二维数组、XGBoost 的二进制的缓存文件。加载的数据存储在对象 DMatrix 中,而llightgbm是存储在Dataset中

trn_data = xgb.DMatrix(train_x.iloc[trn_idx], label=train_y[trn_idx])
val_data = xgb.DMatrix(train_x.iloc[val_idx], label=train_y[val_idx])

3.4 训练和预测

##训练部分
watchlist = [(trn_data, 'train'), (val_data, 'valid')]
clf = xgb.train(params, trn_data, num_round, watchlist, verbose_eval=200, early_stopping_rounds=200)

##预测部分
test_pred_prob += clf.predict(xgb.DMatrix(test), ntree_limit=clf.best_ntree_limit) / folds.n_splits
  • params:参数字典
  • trn_data :训练的数据
  • num_round:迭代次数
  • watchlist:这是一个列表,用于对训练过程中进行评估列表中的元素。形式是evals =[(dtrain,’train’),(dval,’val’)]或者是evals =[(dtrain,’train’)],对于第一种情况,它使得我们可以在训练过程中观察验证集的效果。
  • verbose_eval: 如果为True ,则对evals中元素的评估结果会输出在结果中;如果输入数字,假设为5,则每隔5个迭代输出一次。
  • ntree_limit:验证集中最好的结果做预测

4.模型重要性

模型重要性是根据树模型中该特征的分裂次数做统计的,可以基于此重要性来判断特种的重要程度,深入的挖掘特征,具体代码如下:

##保存特征重要性
fold_importance_df = pd.DataFrame()
fold_importance_df["Feature"] = clf.get_fscore().keys()
fold_importance_df["importance"] = clf.get_fscore().values()
fold_importance_df["fold"] = fold_ + 1
feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)

##特征重要性显示
## plot feature importance
cols = (feature_importance_df[["Feature", "importance"]] 
        .groupby("Feature").mean().
        sort_values(by="importance", ascending=False).index)
best_features = feature_importance_df.loc[feature_importance_df.Feature.isin(cols)]
								.sort_values(by='importance',ascending=False)
plt.figure(figsize=(8, 15))
sns.barplot(y="Feature", x="importance",
            data=best_features.sort_values(by="importance", ascending=False))
plt.title('LightGBM Features (avg over folds)')
plt.tight_layout()
plt.savefig('../../result/xgb_importances.png')

在lightgbm中对应的事clf.feature_importance()函数,而在xgboost中对应的是clf.get_fscore()函数。如果特征过多无法完成显示,可以只取topN显示,如只显示top5

cols = (feature_importance_df[["Feature", "importance"]].groupby("Feature").mean()
        .sort_values(by="importance", ascending=False)[:5].index)

##5.小总结

xgboost和lightgbm对比,它的速度会慢很多,使用也没有lighgbm方便,但是可以将xgboost训练的结果和lightgbm做融合,提升最终的结果。

代码地址:data_mining_models

写在后面

欢迎您关注作者知乎:ML与DL成长之路

推荐关注公众号:AI成长社,ML与DL的成长圣地。

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的 PyTorch 维 CNN 模型的分类任务代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) # 加载数据集 trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) testset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) # 定义数据加载器 trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 希望对你有帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值