紫微斗数:飞宫体系-飞宫遇自化法


文章目录


前言


内容

飞宫是借干遁星,假象合支。当天干在某些变化的趋使下,自然会产生飞宫的行为,以平衡此变化所造成的不平衡现象,这是飞宫法的原理。

按「生年,自化,飞宫」四化的运动引力大小,自化是本宫或本对宫的直线力量,飞宫是抛物线的力量,相对自化的力量恒大于飞宫。所以飞宫时常飞不出想要的结果。

飞宫遇生年,现象一定会发生,要发生象与象的碰撞

飞宫遇自化,往往现象也会发生,也会成局,也要发生象与象的碰撞。

一般来说,飞宫,若遇了生年,是你去做的这件事,范围缩小了, 或是会受到了一定的约束的意思。还与同星、不同星,同组、不同组,等有关联。而飞宫遇自化,是做了此事之后,会受到约束或有后续变化的意思。飞宫同样要法象到生年同类象。

飞宫遇到自化,分成很多种型态,也都分别代表了不同的意思。以下以「飞宫遇自化」不含遇生年的几种常见的几种型态。

一,飞宫后遇离心力自化。

二,飞宫后遇向心力自化。

三,飞宫后遇又向心又离心自化。

四,飞宫后遇进马或退马。


总结

内容概要:本文档详细介绍了如何在MATLAB环境下实现CNN-GRU(卷积门控循环单元)混合模型的多输入单输出回归预测。项目旨在通过融合CNN的局部特征提取能力和GRU的时序依赖捕捉能力,解决传统序列模型在处理非线性、高维、多输入特征数据时的局限性。文档涵盖了项目背景、目标、挑战及其解决方案,强调了模型的轻量、高效性和可视全流程追踪等特点。此外,还提供了具体的应用领域,如智能电网负荷预测、金融时间序列建模等,并附有详细的代码示例,包括数据加载与预处理、网络结构定义、训练选项设置、模型训练与预测以及结果可视等步骤。; 适合人群:对深度学习有一定了解,特别是对时间序列预测感兴趣的科研人员或工程师。; 使用场景及目标:①需要处理多输入单输出的非线性回归预测任务;②希望在MATLAB平台上快速实现并优深度学习模型;③寻求一种高效、轻量且具有良好泛能力的预测模型应用于实际场景中,如智能电网、金融分析、交通流量预测等领域。; 阅读建议:由于文档内容涉及较多的技术细节和代码实现,建议读者先熟悉CNN和GRU的基本概念,同时掌握MATLAB的基础操作。在阅读过程中,可以结合提供的代码示例进行实践操作,以便更好地理解和掌握CNN-GRU混合模型的构建与应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

紫微斗数象法奥义

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值