题目大意:给出斐波那契数列的任意两项F(a1),F(a2),求第F(n)项。
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
数据规模:-2*10^9<=Fk<=2*10^9,(k=[min(i,j,n),max(ij,n)),i!=j。
理论基础:性质:斐波那契数列满足后一项为前两项之和,即:F(n)=F(n-1)+F(n-2)<==>F(n)=F(n+2)-F(n+1)。
题目分析:是一道比较直接的数学题,只需要求出与已知两项的任意一项相邻的一项即可。怎样找呢?可考虑两种方法。
第一种方法:公式法,即根据它的性质用已知两项表示出第F(a1+1)或者其它项,当然你可以直接表示第n项,需要提前预处理出自然数域下的斐波拉契数列,为什么呢?你推推就知道了,动动手吧,别懒了。
第二种方法:数的大小范围给了,判断条件也给了,我们可以知道如果:F(a1+1)小于原值,那么用它推出的,F(a2)一定也会大于给出值,这样我们就相当于是在和程序猜数,那么怎样最快猜出这个数呢?不卖关子了,当然是用二分法了。这样,问题就迎刃而解了。
相比第一种,第二种较为直接,易懂,而且不用推导公式,我选择的是第二种。
代码如下:
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
int main()
{
int a1, fi, a2, fj, n;
scanf( "%d%d%d%d%d",&a1,&fi,&a2,&fj,&n);
if (a2 < a1)
{
int temp;
temp = a1; a1 = a2; a2 = temp;
temp = fi; fi = fj; fj = temp;
}
LL a, b, c, left, right, mid;
left = -3000000000LL; right = 3000000000LL;
while (left +1< right)
{
mid = (left + right) / 2;
a= fi; b = mid;
for (int i = a1 + 2;i <= a2;i++)
{
c = a + b;
a = b;
b = c;
if (c > 8000000000LL || c < -8000000000LL) break;
}
if (b < fj) left = mid;
else if(b == fi)
{
right=mid;
break;
}
else right = mid;
}
LL ans = right;
a = fi; b = ans;
if (n >= a1 + 1)
{
for (int i = a1 + 2;i <= n;i++)
{
c = a+ b;
a = b;
b = c;
}
cout << b << endl;
}
else
{
for (int i = a1 - 1;i >= n;i--)
{
c = b - a;
b = a;
a = c;
}
cout << a << endl;
}
}
其中,一定要对a1与a2预先判断,这样后续工作才能成立。
by: Jsun_moon http://blog.csdn.net/Jsun_moon