URAL 1141

题目大意:给出K组e,c,n,求解m满足m^e=c(mod n),其中:n可以表示为:p*q(p,q,均为素数),gcd(e,(p-1)*(q-1))=1。

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

数据规模:K<=2000,e,n,c<=32000。

理论基础:

     定义:参见链接2。

     定理1:如果p为素数,那么phi(p)=p-1。

     定理2:如果:n=p*q(p,q为互质整数),那么:phi(n)=phi(p)*phi(q)(证明参见链接2)。

     扩展欧几里得算法,将在URAL 1204中讲述,这里不再重复,可参见wiki。

     快速幂模算法:用到了一些同余的基本定理,可参见wiki,关键词同余。

    我们假设求:a^b(mod m),res=1那么我们第一步先将b表示为(2*i+k)的形式,这是完全可以的。

    如果此时k==0,那么:a=a*a(mod n),b=b/2,也就是:变为了(a*a)^i。

    如果此时k==1,那么:res=res*a(mod n),a=a*a(mod n),b=b/2,也就是:变成了(a*a)^i*a(mod n)。

    如此一来我们就将a的幂次降低,而且每一步的结果都不会很大。如此下去,直至b==0的时候,那么a^0=1(mod n),我们就可以返回结果res了。它的基本思路就是利用取模运算的性质将幂模变为积模。以后我们还会讲到将积模变为和模的形式,更大程度上避免了数据溢出问题。

    RSA算法:参见链接1。

题目分析:如果你已经学完了上述所有理论,那么恭喜你,这道题你已经会解了,此题即为一道阅读题。但是在我的地盘,我还是用我的语言再累赘一遍。

    首先,我们被告知了n,e,c,那么根据RSA算法,我们知道:c^d=m(mod n),那么我们只需要求出d即可解,而d满足方程:d*e+phi(n)*k=1,然后我们就可以再利用扩展欧几里得算法求解d了,而在求解d之前我们首先要计算phi(n),这个很容易解决(暴力)。求出d之后再用幂模算法,我们便可以安枕无忧了。有没有闻到ac的气息呢?抓紧行动吧。

代码如下:

#include<iostream>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
typedef double db;
#define DBG 1
#define maa (1<<31)
#define mii ((1<<31)-1)
#define sl(c) ((int)(c).size())    //取字符串长度;
#define forl(i, a, b) for(int i = (a); i <  (b); ++i)    //不带边界值循环,正序
#define forle(i, a, b) for(int i = (a); i <= (b); ++i)   //带边界值循环,正序
#define forh(i, a, b) for(int i = (a); i >  (b); --i)     //不带边界值,逆序
#define forhe(i, a, b) for(int i = (a); i >= (b); --i)        //带边界值,逆序
#define forlc(i, a, b) for(int i##_b = (b), i = (a); i <  i##_b; ++i)  //带别名的循环,用于不可改变值
#define forlec(i, a, b) for(int i##_b = (b), i = (a); i <= i##_b; ++i)
#define forgc(i, a, b) for(int i##_b = (b), i = (a); i >  i##_b; --i)
#define forgec(i, a, b) for(int i##_b = (b), i = (a); i >= i##_b; --i)
#define forall(i, v   )  forl(i, 0, sz(v))   //循环所有
#define forallc(i, v   ) forlc(i, 0, sz(v))
#define forlla(i, v   ) forhe(i, sz(v)-1, 0)
#define forls(i, n, a, b) for(int i = a; i != b; i = n[i])   //搜表用
#define rep(n)  for(int               repp = 0; repp <    (n); ++repp)
#define repc(n) for(int repp_b = (n), repp = 0; repp < repp_b; ++repp)
#define rst(a, v) memset(a, v, sizeof a)   //把字符v填充到a  reset 重置
#define cpy(a, b) memcpy(a, b, sizeof a)   //copy b 的sizeof(a)个字符到a
#define rstn(a, v, n) memset(a, v, (n)*sizeof((a)[0]))  //把字符v填充到a[n]之前的字节
#define cpyn(a, b, n) memcpy(a, b, (n)*sizeof((a)[0]))    //copy b 的 n 个字符到a
#define ast(b) if(DBG && !(b)) { printf("%d!!|\n", __LINE__); while(1) getchar(); }  //调试
#define dout DBG && cout << __LINE__ << ">>| "
#define pr(x) #x"=" << (x) << " | "
#define mk(x) DBG && cout << __LINE__ << "**| "#x << endl
#define pra(arr, a, b)  if(DBG) {\
    dout<<#arr"[] |" <<endl; \
    forlec(i, a, b) cout<<"["<<i<<"]="<<arr[i]<<" |"<<((i-(a)+1)%8?" ":"\n"); \
    if((b-a+1)%8) puts("");\
}                                                             //数列查看
#define rd(type, x) type x; cin >> x   //读数
inline int     rdi() { int d; scanf("%d", &d); return d; }
inline char    rdc() { scanf(" "); return getchar(); }
inline string  rds() { rd(string, s); return s; }
inline db rddb() { db d; scanf("%lf", &d); return d; }
template<class T> inline bool updateMin(T& a, T b) { return a>b? a=b, true: false; }
template<class T> inline bool updateMax(T& a, T b) { return a<b? a=b, true: false; }

int T,e,n,c;

struct triple
{
    int x,y,d;
};
inline int mod(int a,int b)
{
    if(a<0)
    {
        return a%b+b;
    }
    else return a%b;
}
inline void breakup(int n,int &p,int &q)  //分解n.
{
    for(int i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            p=i;
            q=n/i;
            break;
        }
    }
}
triple Extented_Euclid(int a,int b)
{
    triple result;
    if(b==0)
    {
        result.x=1;
        result.y=0;
        result.d=a;
    }
    else
    {
        triple temp=Extented_Euclid(b,mod(a,b));   //递归调用
        result.d=temp.d;
        result.x=temp.y;
        result.y=temp.x-(a/b)*temp.y;
    }
    return result;
}
int pow_mod(int x, int n, int m)  //二进制处理指数,幂变乘。
{
    int res = 1;
    for( ; n; n >>= 1, x = x*x%m)
        if(n & 1) res = res*x%m;
    return res;
}
int main()
{
    T=rdi();
    while(T--)
    {
        scanf("%d%d%d",&e,&n,&c);
        int p,q,d,m;
        triple t;
        breakup(n,p,q);
        t=Extented_Euclid(e,(p-1)*(q-1));
        d=mod(t.x,(p-1)*(q-1));
        m=pow_mod(c,d,n);
        printf("%d\n",m);
    }
	return 0;
}

最后,鼓励大家多多浏览wiki很好的一个知识库。 吐舌头

参考文献:

http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html

http://zh.wikipedia.org/zh-cn/%E6%AC%A7%E6%8B%89%E5%87%BD%E6%95%B0


by: Jsun_moon http://blog.csdn.net/Jsun_moon        

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值