URAL 1268

题目大意:求K个素数pi对应的ni。ni满足:ni,ni^2,ni^3,...,ni^m对pi取模各不相同(i=1,2,3,...),且m最大,ni最大。

Time Limit:250MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

数据规模:1<=K<=6553,2<pi(i=1,2,3,...)<65536。

理论基础: 原根的定义:首先,对于互质的两个整数a,m。必然存在:d<=m-1,使得:a^d=1(mod m),比如说:d=phi(m)。我们定义a对m的阶为所有满足a^d=1(mod m)的d中最小的一个正整数。如此一来,如果a对m的阶为phi(m),那么我们称a为m一个原根。

     原根性质定理:如果a为m的原根,记它的阶为ord,那么:a,a^2,a^3,...,a^ord对m取模的值各不相同。

     定理1:对于整数a,与素数m,则a,a^m对m取模的结果相同(费马小定理)。

     定理2:可以证明,如果正整数(a,m)=1和正整数 d 满足a^d=1(mod m),则ord整除d。

题目分析:由题意和提供的理论基础你或许已经知道为什么,我会直接把故事背景去掉吧。因为题目给出的是素数,所以m最大是p-1,因为:n^p=n(mod p)。所以问题转化为求一个数,在满足是p的原根的情况下,n^(p-1)的值最大。所以就是小于p的最大原根咯(为小于p,因为Little Chu不会睡超过一周(p天))。那当然是要从p-1开始进行枚举了,找到第一个是原根的数。问题转换为如何判断一个数是不是原根呢?那最笨的方法肯定是根据定义看看小于p-1的正整数中有没有数d可以使:a^d=1(mod p)。这样的话时间复杂度变为了K*O(p^2),p稍微大一点,就只能TLE,等等,有一个定理还没有用。应用定理二。我们检查的时候就可以少了好多不必要的步骤了。

代码如下:

#include<iostream>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<ctime>
using namespace std;
typedef double db;
#define DBG 0
#define maa (1<<31)
#define mii ((1<<31)-1)
#define sl(c) ((int)(c).size())    //取字符串长度;
#define forl(i, a, b) for(int i = (a); i <  (b); ++i)    //不带边界值循环,正序
#define forle(i, a, b) for(int i = (a); i <= (b); ++i)   //带边界值循环,正序
#define forh(i, a, b) for(int i = (a); i >  (b); --i)     //不带边界值,逆序
#define forhe(i, a, b) for(int i = (a); i >= (b); --i)        //带边界值,逆序
#define forlc(i, a, b) for(int i##_b = (b), i = (a); i <  i##_b; ++i)  //带别名的循环,用于不可改变值
#define forlec(i, a, b) for(int i##_b = (b), i = (a); i <= i##_b; ++i)
#define forgc(i, a, b) for(int i##_b = (b), i = (a); i >  i##_b; --i)
#define forgec(i, a, b) for(int i##_b = (b), i = (a); i >= i##_b; --i)
#define forall(i, v   )  forl(i, 0, sz(v))   //循环所有
#define forallc(i, v   ) forlc(i, 0, sz(v))
#define forlla(i, v   ) forhe(i, sz(v)-1, 0)
#define forls(i, n, a, b) for(int i = a; i != b; i = n[i])   //搜表用
#define rep(n)  for(int               repp = 0; repp <    (n); ++repp)
#define repc(n) for(int repp_b = (n), repp = 0; repp < repp_b; ++repp)
#define rst(a, v) memset(a, v, sizeof a)   //把字符v填充到a  reset 重置
#define cpy(a, b) memcpy(a, b, sizeof a)   //copy b 的sizeof(a)个字符到a
#define rstn(a, v, n) memset(a, v, (n)*sizeof((a)[0]))  //把字符v填充到a[n]之前的字节
#define cpyn(a, b, n) memcpy(a, b, (n)*sizeof((a)[0]))    //copy b 的 n 个字符到a
#define ast(b) if(DBG && !(b)) { printf("%d!!|\n", __LINE__); while(1) getchar(); }  //调试
#define dout DBG && cout << __LINE__ << ">>| "
#define pr(x) #x"=" << (x) << " | "
#define mk(x) DBG && cout << __LINE__ << "**| "#x << endl
#define pra(arr, a, b)  if(DBG) {\
    dout<<#arr"[] |" <<endl; \
    forlec(i, a, b) cout<<"["<<i<<"]="<<arr[i]<<" |"<<((i-(a)+1)%8?" ":"\n"); \
    if((b-a+1)%8) puts("");\
}                                                             //数列查看
#define rd(type, x) type x; cin >> x   //读数
inline int     rdi() { int d; scanf("%d", &d); return d; }
inline char    rdc() { scanf(" "); return getchar(); }
inline string  rds() { rd(string, s); return s; }
inline db rddb() { db d; scanf("%lf", &d); return d; }
template<class T> inline bool updateMin(T& a, T b) { return a>b? a=b, true: false; }
template<class T> inline bool updateMax(T& a, T b) { return a<b? a=b, true: false; }

typedef unsigned int lu;
int n,m,ans,tot,f[1000],T;

int pow_mod(lu a,int b)
{
    lu res=1;
    while(b>0)
    {
        if(b&1)res=(res*a)%n;
        a=(a*a)%n;
        b>>=1;
    }
    return (int)res;
}
bool check(int x)
{
    forl(i,0,tot)
    {
        if(pow_mod((lu)x,f[i])==1)return false;
    }
    return true;
}
int solve()
{
    if(n<=3)return n-1;
    tot=0,ans=m=n-1;
    for(int i=2;i*i<=m;i++)
    {
        if(m%i==0)
        {
            if(i*i!=m)
            {
                f[tot++]=i;
                f[tot++]=m/i;
            }
            else f[tot++]=i;
        }
    }
    sort(f,&f[tot]);
    pra(f,0,tot-1)
    while(!check(ans))ans--;
    return ans;
}
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        printf("%d\n",solve());
    }
    return 0;
}

数论未完,待续。。。           

http://zh.wikipedia.org/wiki/%E5%8E%9F%E6%A0%B9

by: Jsun_moon http://blog.csdn.net/Jsun_moon

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值