URAl 1456

题目大意:给出两个数a,m,求a对m的阶。(无解输出0)

Time Limit:250MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

数据规模:2<=a<n<=10^9。

理论基础:

    定义:对于整数a,m,使得a^d=1(mod m)的最小整数d即为a对m的阶。

    欧拉定理:对于gcd(a,m)=1,a,m为整数,则a^phi(m)=1(mod m),m>=2。

    定理:如果d是a的阶,那么d一定整除phi(m)。

    定理:如果m=p1^k1*p2^k2*...,则:phi(m)=p1^(k1-1)*(p1-1)*p2^k2*(p2-1)*...。

    定理:假设ord为a对m的阶,那么:ord必然整除phi(m)。

    幂模运算,参见本博客置顶的文章。这里不再累赘。

    证明参见链接1。

题目分析:这是一道很经典的数论题,题目很明确就是求一个数对另一个数的阶。那么阶什么时候存在呢?答案是当且仅当:gcd(a,m)=1时。

证明:

必要性:

假设gcd(a,m)=k(k>1)时阶仍存在,记a=a/k,m=m/k,则此时a,m互质,

假设存在d,使得(a*k)^d=1(mod m*k),

那么存在整数i使得:(a*k)^d-m*k*i=1,即:

k*(a^d*k^(d-1)-m*i)=1则:k整除1,这是不可能的,与假设矛盾,所以假设不成立。所以当a对m的阶存在时,gcd(a,m)=1。

必要性:

假设:gcd(a,m)=1,那么由欧拉定理得:a^phi(m)=1(mod m),

假设此时有更小且为最小的d可以使a^d=1(mod m),那么阶即为这个数。

如果此时没有比phi(m)更小的数,那么根据定义,phi(m)即为a对m的阶。

所以原命题得证。

那么,至此,算法已经出来了。先验证是否有根。

然后,求出phi(m)。

最后求出:a的阶(从小到大枚举phi(m)的所有因子)。

代码如下:

#include<iostream>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<ctime>
using namespace std;
typedef double db;
#define DBG 0
#define maa (1<<31)
#define mii ((1<<31)-1)
#define sl(c) ((int)(c).size())    //取字符串长度;
#define forl(i, a, b) for(int i = (a); i <  (b); ++i)    //不带边界值循环,正序
#define forle(i, a, b) for(int i = (a); i <= (b); ++i)   //带边界值循环,正序
#define forh(i, a, b) for(int i = (a); i >  (b); --i)     //不带边界值,逆序
#define forhe(i, a, b) for(int i = (a); i >= (b); --i)        //带边界值,逆序
#define forlc(i, a, b) for(int i##_b = (b), i = (a); i <  i##_b; ++i)  //带别名的循环,用于不可改变值
#define forlec(i, a, b) for(int i##_b = (b), i = (a); i <= i##_b; ++i)
#define forgc(i, a, b) for(int i##_b = (b), i = (a); i >  i##_b; --i)
#define forgec(i, a, b) for(int i##_b = (b), i = (a); i >= i##_b; --i)
#define forall(i, v   )  forl(i, 0, sz(v))   //循环所有
#define forallc(i, v   ) forlc(i, 0, sz(v))
#define forlla(i, v   ) forhe(i, sz(v)-1, 0)
#define forls(i, n, a, b) for(int i = a; i != b; i = n[i])   //搜表用
#define rep(n)  for(int               repp = 0; repp <    (n); ++repp)
#define repc(n) for(int repp_b = (n), repp = 0; repp < repp_b; ++repp)
#define rst(a, v) memset(a, v, sizeof a)   //把字符v填充到a  reset 重置
#define cpy(a, b) memcpy(a, b, sizeof a)   //copy b 的sizeof(a)个字符到a
#define rstn(a, v, n) memset(a, v, (n)*sizeof((a)[0]))  //把字符v填充到a[n]之前的字节
#define cpyn(a, b, n) memcpy(a, b, (n)*sizeof((a)[0]))    //copy b 的 n 个字符到a
#define ast(b) if(DBG && !(b)) { printf("%d!!|\n", __LINE__); while(1) getchar(); }  //调试
#define dout DBG && cout << __LINE__ << ">>| "
#define pr(x) #x"=" << (x) << " | "
#define mk(x) DBG && cout << __LINE__ << "**| "#x << endl
#define pra(arr, a, b)  if(DBG) {\
    dout<<#arr"[] |" <<endl; \
    forlc(i, a, b) cout<<"["<<i<<"]="<<arr[i]<<" |"<<((i-(a)+1)%8?" ":"\n"); \
    if((b-a+1)%8) puts("");\
}                                                             //数列查看
#define rd(type, x) type x; cin >> x   //读数
inline int     rdi() { int d; scanf("%d", &d); return d; }
inline char    rdc() { scanf(" "); return getchar(); }
inline string  rds() { rd(string, s); return s; }
inline db rddb() { db d; scanf("%lf", &d); return d; }
template<class T> inline bool updateMin(T& a, T b) { return a>b? a=b, true: false; }
template<class T> inline bool updateMax(T& a, T b) { return a<b? a=b, true: false; }
typedef long long LL;
typedef long unsigned LU;

int fcnt[10000],f[10000],d[70000],nf,nd,a,n,x,phin=1;
bool nprime[31625]={true,true};
void psieve(int n)    //求出所需素数
{
    int bor=sqrt((float)n)+1,temp;
    forl(i,2,bor)
    {
        if(!nprime[i])
        {
            for(int j=i;(temp=j*i)<=n;j++)nprime[temp]=true;
        }
    }
}
bool isprinme(int n)
{
    int bor=sqrt((float)n)+1;
    forl(i,2,bor)
    {
        if(nprime[i])continue;
        if(n%i==0)return false;
    }
    return true;
}
int power(int a,int b)   //自己的求幂函数
{
    int res=1;
    rep(b)res*=a;
    return res;
}
int pow_mod(LL a,LL b)   //用LL防止溢出
{
    LL res=1;
    while(b>0)
    {
        if(b&1)res=(res*a)%n;
        a=(a*a)%n;
        b>>=1;
    }
    return res;
}
void dfs(int dep,int pdt)   //dfs找出phi(m)的所有因子,每一层贡献一个素因子。
{
    if(dep==nf)
    {
        d[nd++]=pdt;
        return;
    }
    dfs(dep+1,pdt);
    repc(fcnt[dep]) dfs(dep+1, pdt*=f[dep]);
}
void breakup(int t)        //对t进行质因数分解。
{
    forlc(i,2,sqrt((float)t)+1)
    {
        if(!nprime[i])
        {
            if(t%i==0)
            {
                f[nf]=i;
                while(t!=1)
                {
                    if(t%i!=0)break;
                    t/=i;
                    fcnt[nf]++;
                }
                nf++;
            }
        }
    }
    if(t!=1)
    {
        f[nf]=t;
        fcnt[nf]++;
        nf++;
    }
}
int gcd(int a,int b)
{
    if(b==0)return a;
    return gcd(b,a%b);
}
inline bool check(int i)
{
     if(pow_mod((LL)a,(LL)i)!=1)return false;
     return true;
}
void phi(int n)
{
    if(isprinme(n))
    {
        phin=n-1;
        return;
    }
    breakup(n);
    pra(f,0,nf)         
    pra(fcnt,0,nf)
    forl(i,0,nf)
    {
        phin*=(power(f[i],fcnt[i]-1)*(f[i]-1));
    }
    dout<<phin<<endl;
    rst(fcnt,0);
    pra(fcnt,0,nf);
    nf=0;
}

int main()
{
    scanf("%d%d",&a,&n);
    if(gcd(a,n)!=1)
    {
        printf("0\n");
        exit(0);
    }
    psieve((int)sqrt((float)n)+1);
    phi(n);
    breakup(phin);
    dfs(0,1);
    sort(d,d+nd);
    forl(i,0,nd)
    {
        if(check(d[i]))
        {
            x=d[i];
            break;
        }
    }
    pra(d,0,nd)
    pra(f,0,nf)
    pra(fcnt,0,nf)
    printf("%d\n",x);
    return 0;
}
    其中pra(a,0,n)是用来调试用的,查看数组。可以查看a[]的从a[0]到a[n]的值。当DBG为0的时候不会执行,调试时只需将DBG改为1即可,作者:neko13。

参考文献:

http://zh.wikipedia.org/zh-cn/%E6%AC%A7%E6%8B%89%E5%87%BD%E6%95%B0

by:Jsun_moon http://blog.csdn.net/Jsun_moon

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值