题目大意:给出正整数n,求其最少可以表示为几个数的平方之和。
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
数据规模:n<=10^15(有点大,好在只有一组测例)。
理论基础:
四平和方定理 (英语:Lagrange's four-square theorem):每个正整数均可表示为4个整数的平方和。
定理1:三个平方数之和不能表示形如 4^k(8m + 7) 的数。
定理2:若一个正整数可以表示为因子中没有形如 4k + 3 的素数的奇次方,则它可以表示成两个平方数之和。
题目分析:题目仅需要我们分析最少能用几个表示,并没让求出有哪些数。所以根据上面的定理,我们将答案ans锁定在:1,2,3,4这四个数之间。
首先:如果n是一个平方数,那么ans=1。
其次,我们要讨论它能否由两个数平方之和表示。我们先去除n中所有的因子2得到m。如果m%4!=3,进行下一步。如果m==1,那么说明n除了2没有别的因子,满足定理2的条件,则ans=2。如果m!=1。那么我们只能乖乖的判断n是否能不能被表示为两个数之和了(有些人给的程序,判断m是否能被表示为两个数平方之和,依此代表n的情况,这种做法是错误的,因为定理2的否命题,逆命题都不成立,虽然ac了,那也只是没碰到个例罢了)。但是判断的时候我们要学会优化,首先我们要求出k1=sqrt(n),因为要用两个数表示肯定超不过这个数。然后求出k2=sqrt(n-k1*k1),这样我们的枚举范围就是从k2->k1了,如果枚举中发现(i*i+k*k=n),ans=2,否则ans!=2。
然后,我们去除n中的所有因子4,得到m,如果m%8==7,则ans=4,否则ans=3;
至此,我们就讨论完了所有的情况。
代码如下:
#include<iostream>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<ctime>
using namespace std;
typedef double db;
#define DBG 0
#define maa (1<<31)
#define mii ((1<<31)-1)
#define sl(c) ((int)(c).size()) //取字符串长度;
#define forl(i, a, b) for(int i = (a); i < (b); ++i) //不带边界值循环,正序
#define forle(i, a, b) for(int i = (a); i <= (b); ++i) //带边界值循环,正序
#define forh(i, a, b) for(int i = (a); i > (b); --i) //不带边界值,逆序
#define forhe(i, a, b) for(int i = (a); i >= (b); --i) //带边界值,逆序
#define forlc(i, a, b) for(int i##_b = (b), i = (a); i < i##_b; ++i) //带别名的循环,用于不可改变值
#define forlec(i, a, b) for(int i##_b = (b), i = (a); i <= i##_b; ++i)
#define forgc(i, a, b) for(int i##_b = (b), i = (a); i > i##_b; --i)
#define forgec(i, a, b) for(int i##_b = (b), i = (a); i >= i##_b; --i)
#define forall(i, v ) forl(i, 0, sz(v)) //循环所有
#define forallc(i, v ) forlc(i, 0, sz(v))
#define forlla(i, v ) forhe(i, sz(v)-1, 0)
#define forls(i, n, a, b) for(int i = a; i != b; i = n[i]) //搜表用
#define rep(n) for(int repp = 0; repp < (n); ++repp)
#define repc(n) for(int repp_b = (n), repp = 0; repp < repp_b; ++repp)
#define rst(a, v) memset(a, v, sizeof a) //把字符v填充到a reset 重置
#define cpy(a, b) memcpy(a, b, sizeof a) //copy b 的sizeof(a)个字符到a
#define rstn(a, v, n) memset(a, v, (n)*sizeof((a)[0])) //把字符v填充到a[n]之前的字节
#define cpyn(a, b, n) memcpy(a, b, (n)*sizeof((a)[0])) //copy b 的 n 个字符到a
#define ast(b) if(DBG && !(b)) { printf("%d!!|\n", __LINE__); while(1) getchar(); } //调试
#define dout DBG && cout << __LINE__ << ">>| "
#define pr(x) #x"=" << (x) << " | "
#define mk(x) DBG && cout << __LINE__ << "**| "#x << endl
#define pra(arr, a, b) if(DBG) {\
dout<<#arr"[] |" <<endl; \
forlec(i, a, b) cout<<"["<<i<<"]="<<arr[i]<<" |"<<((i-(a)+1)%8?" ":"\n"); \
if((b-a+1)%8) puts("");\
} //数列查看
#define rd(type, x) type x; cin >> x //读数
inline int rdi() { int d; scanf("%d", &d); return d; }
inline char rdc() { scanf(" "); return getchar(); }
inline string rds() { rd(string, s); return s; }
inline db rddb() { db d; scanf("%lf", &d); return d; }
template<class T> inline bool updateMin(T& a, T b) { return a>b? a=b, true: false; }
template<class T> inline bool updateMax(T& a, T b) { return a<b? a=b, true: false; }
typedef long long LL;
typedef long unsigned LU;
LL n,k1,m,k2,l,x,cnt;
int main()
{
scanf("%I64d",&n);
if(n==0)
{
printf("0\n");
exit(0);
}
if(n==1)
{
printf("1\n");
exit(0);
}
k1=sqrt((double)n);
if(k1*k1==n)
{
printf("1\n");
exit(0);
}
m=n;
while(m%2==0)
{
cnt++;
m/=2;
}
if(m%4!=3)// 若一个正整数可以表示为因子中没有形如 4k + 3 的素数的奇次方,则它可以表示成两个平方数之和。
{
if(m==1)
{
printf("2\n");
exit(0);
}
m=n;
l=m;
k1=sqrt((double)m);
m=m-k1*k1;
k2=sqrt((double)m);
for(x=k1;x>=k2;x--)
{
m=l;
m=m-x*x;
k2=sqrt((double)m);
if(x*x+k2*k2==l)
{
printf("2\n");
dout<<pr(x)<<" "<<pr(k2)<<endl;
exit(0);
}
}
}
m=n;
while(m%4==0)m/=4;
if(m%8==7)
{
printf("4\n");
exit(0);
}
printf("3\n");
return 0;
}
其中,重点就是ans==2时的判断。
参考文献:
http://zh.wikipedia.org/wiki/%E5%9B%9B%E5%B9%B3%E6%96%B9%E5%92%8C%E5%AE%9A%E7%90%86
by:Jsun_moon http://blog.csdn.net/jsun_moon