hdu 1573(数论:中国剩余定理)

网上都说这个题用中国剩余定理做,但是中国剩余定理的适用条件是:

求解x=a[i](mod n[i])方程组,且n[i]两两互质

但可以发现这个题中n[i]并不两两互质

想不出解法参考网上的代码发现好多人都是用暴力写的,偏偏说是中国剩余定理鄙视

我就对着用暴力写了一个,但是暴力的过程需要优化处理,否则会超时

另外从这道题中也学会了怎么求解多个数的最小公倍数

1、求解最小公倍数(lcm)方法:

之前做题求两个数的lcm时,都是用其乘积除以它们的gcd

于是这次就很自然的这么做,才发现这样做的方法错得很离谱

比如:求2 3 4的lcm 答案很明显是12

但是用上述方法求得出来的结果是1

所以正确的方法应该是每次求出当前结果与下一个数的lcm

如果想要一次求出所有数的lcm,正确的做法如下:

如求a[1-n]的lcm

令M=a[i]*...*a[n];

令b[i]=M/a[i]; b_gcd为b数组的gcd

则a数组的lcm为M/b_gcd

用第一种方式写出来的代码会更简洁些:

for(int i=0; i<num; ++i) {
            scanf("%d", &a[i]);
            lcm = lcm*a[i]/gcd(lcm, a[i]);
}

2、中国剩余定理

发现网上很多人说中国剩余定理的变形可以用来解决n[i]两两不互质的情况

因为感觉太繁琐了,又是模板型,就没有看,下面把普通的中国剩余定理代码贴上

#include <cmath>
#include <cstdio>
#include <iostream>
#include <algorithm>
#define MAXN 10010
#define LL long long
using namespace std;

int a[MAXN], n[MAXN], m[MAXN];

int gcd(int a, int b) {
    return b==0 ? a : gcd(b, a%b);
}

int expand_gcd(int a, int b, int d, int &x, int &y) {//用于求ax+by=d的一个解
    if(b == 0) {
        d = a;
        x = 1;
        y = 0;
    }
    else {
        expand_gcd(b, a%b, d, y, x);
        y -= x*(a/b);
    }
}

int inv(int a, int n) {//用于求逆元
    int d, x, y;
    expand_gcd(a, n, d, x, y);
    return d==1 ? (x+n)%n : -1;
}

int chinese_remainder(int a[], int n[], int num) {
    int M = 1;
    int d, x, y;
    for(int i=1; i<=num; ++i) {
        M *= n[i];
    }

    int sum = 0;
    for(int i=1; i<=num; ++i) {
        m[i] = M/n[i];
        expand_gcd(m[i], -n[i], d, x, y);
        x = inv(m[i], -n[i]);
        sum += (a[i]*x*m[i])%M;
    }
    return sum % M;
}

int main(void) {
    int num;
    while(scanf("%d", &num) != EOF) {
    
        for(int i=1; i<=num; ++i) {
            scanf("%d %d", &a[i], &n[i]);
        }
        
        cout << chinese_remainder(a, n, num) << endl;
    }
    return 0;
}

看到了一个很好的中国剩余定理对应n[i]非两两互质的说明

把图片传在这里


3、这道题的代码:

找到第一个i满足模方程组后,可知i+k*lcm均满足条件(k为非负数)

从这个形式可以发现第一个满足条件的一定是i 且i<=lcm

故在找i的for循环中可以限定条件i<=lcm,这样会大大优化程序运行时间

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAXN 10
#define LL long long
using namespace std;

int a[MAXN], b[MAXN];

int gcd(int a, int b) {
    return b==0 ? a : gcd(b,a%b);
}

int main(void) {
    int T;
    int lcm;
    bool flag;
    scanf("%d", &T);
    while(T--) {
        int max, num;
        scanf("%d%d", &max, &num);

        lcm = 1;
        flag = false;

        for(int i=0; i<num; ++i) {
            scanf("%d", &a[i]);
            lcm = lcm*a[i]/gcd(lcm, a[i]);
        }

        for(int i=0; i<num; ++i) {
            scanf("%d", &b[i]);
        }
        int i = 0, j;

        for(i=1; i<=max && i<=lcm; ++i) {
            for(j=0; j<num; ++j) {
                if(i%a[j] != b[j]) {
                    break;
                }
            }
            if(j == num) {
                flag = true;
                break;
            }
        }
        if(!flag)
            cout << "0" << endl;
        else {
            cout << (max-i)/lcm+1 << endl;
        }
    }
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值