模板:(数学:高斯消元法)

其实感觉白书上的代码挺不错的

简单易懂,但是功能好像不太强

找题解的时候发现基本清一色的是Kuangbin的模板

我也在这里贴一下,方便以后使用


附原模板地址:点击打开链接

代码以及解释如下:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN=50;

int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元

/*
void Debug(void) {
    int i, j;
    for (i = 0; i < equ; i++) {
        for (j = 0; j < var + 1; j++) {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}
*/


inline int gcd(int a, int b) {
    return b ? gcd(b, a%b) : a;
}
inline int lcm(int a, int b) {
    return a/gcd(a,b)*b;//先除后乘防溢出
}

// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ, int var, int MOD) {
    int i,j,k;
    int max_r;// 当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;

    for(int i=0; i<=var; i++) {
        x[i]=0;
        free_x[i]=true;
    }

    //转换为阶梯阵.
    col=0; // 当前处理的列
    for(k=0; k<equ&&col<var; k++, col++) {// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r = k;
        for(i=k+1; i<equ; i++) {
            if(abs(a[i][col])>abs(a[max_r][col])) 
                max_r = i;
        }
        if(max_r!=k) {// 与第k行交换.
            for(j=k;j<var+1;j++) swap(a[k][j], a[max_r][j]);
        }
        if(a[k][col]==0) {// 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for(i=k+1; i<equ; i++) {// 枚举要删去的行.
            if(a[i][col] != 0) {
                LCM = lcm(abs(a[i][col]), abs(a[k][col]));
                ta = LCM/abs(a[i][col]);
                tb = LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0)
                    tb =- tb;//异号的情况是相加
                for(j=col; j<var+1; j++) {
                    a[i][j] = ((a[i][j]*ta-a[k][j]*tb)%MOD+MOD)%MOD;
                }
            }
        }
    }

  //  Debug();

    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for(i=k; i<equ; i++) { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
    // 且出现的行数即为自由变元的个数.
    if(k < var) {
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for(i=k-1; i>=0; i--) {
            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for(j=0; j<var; j++) {
                if(a[i][j] != 0 && free_x[j]) 
                    free_x_num++, free_index = j;
            }
            if(free_x_num > 1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for(j=0; j<var; j++) {
                if(a[i][j]!=0 && j!=free_index) 
                    temp -= a[i][j]*x[j]%MOD;
                temp = (temp%MOD+MOD)%MOD;
            }
            while(temp%a[i][free_index] != 0) temp += MOD;
            x[free_index] = temp/a[i][free_index]%MOD; // 求出该变元.
            free_x[free_index] = 0; // 该变元是确定的.
        }
        return var-k; // 自由变元有var - k个.
    }
    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
    // 计算出Xn-1, Xn-2 ... X0.
    for(i=var-1; i>=0; i--) {
        temp = a[i][var];
        for(j=i+1; j<var; j++) {
            if(a[i][j] != 0) 
                temp -= a[i][j] * x[j];
            temp = (temp%MOD+MOD)%MOD;
        }
        while(temp%a[i][i] != 0) temp += MOD;
        if(temp%a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
        x[i] = temp / a[i][i];
    }
    return 0;
}
int main(void) {
    /*
    freopen("in.txt", "r", stdin);
    freopen("out.txt","w",stdout);
    */
    int i, j;
    int equ, var, MOD;
    while(~scanf("%d%d", &equ, &var)) {
        scanf("%d", &MOD);
        memset(a, 0, sizeof(a));
        for(i=0; i<equ; i++) {
            for(j=0; j<var+1; j++) {
                scanf("%d", &a[i][j]);
            }
        }
//        Debug();
        int free_num = Gauss(equ, var, MOD);
        if(free_num == -1) printf("无解!\n");
        else if(free_num == -2) printf("有浮点数解,无整数解!\n");
        else if(free_num > 0) {
            printf("无穷多解! 自由变元个数为%d\n", free_num);
            for(i=0; i<var; i++) {
                if(free_x[i]) printf("x%d 是不确定的\n", i + 1);
                else printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        else {
            for (i=0; i<var; i++) {
                printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        printf("\n");
    }
    return 0;
}

再来一发XOR方程的模板

代码如下:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN=50;

int a[MAXN][MAXN];
int x[MAXN];
bool free_x[MAXN];

/*
void Debug(void) {
    int i, j;
    for (i = 0; i < equ; i++) {
        for (j = 0; j < var + 1; j++) {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}
*/

int Gauss(int equ, int var, int MOD) {
    int i,j,k;
    int max_r;
    int col;
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;

    for(int i=0; i<=var; i++) {
        x[i]=0;
        free_x[i]=true;
    }

    col=0; 
    for(k=0; k<equ&&col<var; k++, col++) {
        max_r = k;
        for(i=k+1; i<equ; i++) {
            if(abs(a[i][col])>abs(a[max_r][col])) 
                max_r = i;
        }
        if(max_r!=k) {
            for(j=k;j<var+1;j++) swap(a[k][j], a[max_r][j]);
        }
        if(a[k][col]==0) {
            k--;
            continue;
        }
        for(i=k+1; i<equ; i++) {
            if(a[i][col] != 0) {
                for(j=col; j<var+1; j++)
                    a[i][j] ^= a[k][j];
            }
        }
    }

    for(i=k; i<equ; i++) { 
        if (a[i][col] != 0) return -1;
    }
    if(k < var)  return var-k;

    for(i=var-1; i>=0; i--) {
        x[i] = a[i][var];
        for(j=i+1; j<var; j++) {
            x[i] ^= (a[i][j]&&x[j]);
        }
    }
    return 0;
}

void solve() {
    int ans = gauss();
    if(ans == -1) {
        puts("inf");
        return ;
    } else if(ans == 0) {
        int res = 0;
        for(int i=0; i<equ; ++i)
            res += x[i];
        printf("%d\n", res);
        return ;
    } else {
        int res = 0x3f3f3f3f;
        int tot = (1<<ans);
        for(int i=0; i<tot; ++i) {
            int cnt = 0;
            for(int j=0; j<ans; ++j) {
                if(i&(1<<j)) {
                    x[free_x[j]] = 1;
                    ++cnt;
                } else x[free_x[j]] = 0;
            }
            for(int j=var-ans-1; j>=0; --j) {
                int idx;
                for(idx=j; idx<var; ++idx)
                    if(a[j][idx])
                        break;
                x[idx] = a[j][var];
                for(int l=idx+1; l<var; ++l)
                    if(a[j][l])
                        x[idx] ^= x[l];
                cnt += x[idx];
            }
            res = min(res, cnt);
        }
        printf("%d\n", res);
    }
}

int main(void) {
    int i, j;
    int equ, var, MOD;
    while(~scanf("%d%d", &equ, &var)) {
        scanf("%d", &MOD);
        memset(a, 0, sizeof(a));
        for(i=0; i<equ; i++) {
            for(j=0; j<var+1; j++) {
                scanf("%d", &a[i][j]);
            }
        }
//        Debug();
        int free_num = Gauss(equ, var, MOD);
        if(free_num == -1) printf("无解!\n");
        else if(free_num == -2) printf("有浮点数解,无整数解!\n");
        else if(free_num > 0) {
            printf("无穷多解! 自由变元个数为%d\n", free_num);
            for(i=0; i<var; i++) {
                if(free_x[i]) printf("x%d 是不确定的\n", i + 1);
                else printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        else {
            for (i=0; i<var; i++) {
                printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        printf("\n");
    }
    return 0;
} 


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值