最小二乘法,通常用在我们已知数学模型,但是不知道模型参数的情况下,通过实测数据,计算数学模型,例如,在题目中,数学模型就是直线方程y=ax+b,但是不知道直线方程的a和b。
本来呢,我们只需要两组(xi,yi),就可以解得a和b,但是由于实测数据都存在误差,所以,我们很容易想到一个办法,我们测很多组数据来让我的a和b更加准确。
“我们测很多组数据来让我的a和b更加准确” ,那么我从数学角度如何体现这句话呢?
比如在此例中,已知数学模型 y=ax+b
我们有很多组数据,那么我们要找一条直线,使得我们测得的每个数据,到这条直线的偏离量的总和最小。(这句话有点拗口,慢慢理解下)
那么怎么用数学描述“偏离量总和最小”这个概念呢?
数学家运用了方差!
数学模型 y=ax+b
设F=ax+b-y
那么对于模型上的点(注意是模型上的点,也就是理论值),F=ax+b-y=0
但是对于实际值来说,F=axi+b-yi 一定不等于0。那么我们就要找到一对a和b,使得F尽可能接近于0。
也就是说,“偏离量总和最小”这个概念,在数学上实际上就是要求F的方差最小。
即 Σ F^2→0 (F的平方和趋近于0)
即 Σ(axi+b-yi)^2→0
那么我们得到一个方程f(a,b)=Σ(axi+b-yi)^2,我们要找到合适的a,b使得f(a,b)最小!
也就是说,我们要找到的实际上是f(a,b)的最小值点。(因为方差不可能小于0)
因此我们需要求f(a,b)的极值点。我们借助数学工具偏导。
如果有一组a,b使得
∂f(a,b)/∂a=0
∂f(a,b)/∂b=0
那么f(a,b)就是极值点,如果a,b只有一对,那么它就是最小值点。
即 ∂( Σ(axi+b-yi)^2 )/∂a=0
∂( Σ(axi+b-yi)^2 )/∂b=0
化简得到
a*Σxi^2 + b*Σxi = Σ(xi*yi)
a*Σxi + b*N = Σyi
其中N是(xi,yi)的个数。即我们测了多少组数据
解上面的二元方程,我们就可以得到唯一的一组a,b啦,这就是我们所需要的a和b
O(∩_∩)O~是不是蛮简单的?
Matlab最基础的程序如下:
- %原始数据
- X=[163 123 150 123 141];
- Y=[186 126 172 125 148];
- n=5; %一共5个变量
-
- x2=sum(X.^2); % 求Σ(xi^2)
- x1=sum(X); % 求Σ(xi)
- x1y1=sum(X.*Y); % 求Σ(xi*yi)
- y1=sum(Y); % 求Σ(yi)
-
- a=(n*x1y1-x1*y1)/(n*x2-x1*x1); %解出直线斜率b=(y1-a*x1)/n
- b=(y1-a*x1)/n; %解出直线截距
- %作图
- % 先把原始数据点用蓝色十字描出来
- figure
- plot(X,Y,’+’);
- hold on
- % 用红色绘制拟合出的直线
- px=linspace(120,165,45);%这里直线区间根据自己实际需求改写
- py=a*px+b;
- plot(px,py,’r’);
%原始数据
X=[163 123 150 123 141];
Y=[186 126 172 125 148];
n=5; %一共5个变量
x2=sum(X.^2); % 求Σ(xi^2)
x1=sum(X); % 求Σ(xi)
x1y1=sum(X.*Y); % 求Σ(xi*yi)
y1=sum(Y); % 求Σ(yi)
a=(n*x1y1-x1*y1)/(n*x2-x1*x1); %解出直线斜率b=(y1-a*x1)/n
b=(y1-a*x1)/n; %解出直线截距
%作图
% 先把原始数据点用蓝色十字描出来
figure
plot(X,Y,'+');
hold on
% 用红色绘制拟合出的直线
px=linspace(120,165,45);%这里直线区间根据自己实际需求改写
py=a*px+b;
plot(px,py,'r');
结果 a=1.5555 b=-66.365