在IDEA中编写Spark的WordCount程序

本文介绍了如何在IntelliJ IDEA中创建一个Spark WordCount程序,包括配置Maven项目、编写Scala代码、打包成jar,并在Spark集群上提交运行。在提交过程中遇到连接超时的问题,通过调整Spark内存设置成功解决。
摘要由CSDN通过智能技术生成

在IDEA中编写Spark的WordCount程序

1:spark shell仅在测试和验证我们的程序时使用的较多,在生产环境中,通常会在IDE中编制程序,然后打成jar包,然后提交到集群,最常用的是创建一个Maven项目,利用Maven来管理jar包的依赖。

2:配置Maven的pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.bie</groupId>
    <artifactId>sparkWordCount</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>1.7</maven.compiler.source>
        <maven.compiler.target>1.7</maven.compiler.target>
        <encoding>UTF-8</encoding>
        <scala.version>2.10.6</scala.version>
        <scala.compat.version>2.10</scala.compat.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.10</artifactId>
            <version>1.5.2</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.10</artifactId>
            <version>1.5.2</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.6.2</version>
        </dependency>
    </dependencies>

    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <testSourceDirectory>src/test/scala</testSourceDirectory>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                        <configuration>
                            <args>
                                <arg>-make:transitive</arg>
                                <arg>-dependencyfile</arg>
                                <arg>${project.build.directory}/.scala_dependencies</arg>
                            </args>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-surefire-plugin</artifactId>
                <version>2.18.1</version>
                <configuration>
                    <useFile>false</useFile>
                    <disableXmlReport>true</disableXmlReport>
                    <includes>
                        <include>**/*Test.*</include>
                        <include>**/*Suite.*</include>
                    </includes>
                </configuration>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>com.bie.WordCount</mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

注意:配置好pom.xml以后,点击Enable Auto-Import即可;

3:将src/main/java和src/test/java分别修改成src/main/scala和src/test/scala,与pom.xml中的配置保持一致();

4:新建一个scala class,类型为Object,然后编写spark程序,如下所示:

import org.apache.spark.{SparkConf, SparkContext}

object WordCount {

  def main(args: Array[String]): Unit = {
    //创建SparkConf()并且设置App的名称
    val conf = new SparkConf().setAppName("wordCount");
    //创建SparkContext,该对象是提交spark app的入口
    val sc = new SparkContext(conf);
    //使用sc创建rdd,并且执行相应的transformation和action
    sc.textFile(args(0)).flatMap(_.split(" ")).map((_ ,1)).reduceByKey(_ + _,1).sortBy(_._2,false).saveAsTextFile(args(1));
    //停止sc,结束该任务
    sc.stop();
  }
}

5:使用Maven打包:首先修改pom.xml中的mainClass,使其和自己的类路径对应起来:

然后,点击idea右侧的Maven Project选项,点击Lifecycle,选择clean和package,然后点击Run Maven Build:

等待编译完成,选择编译成功的jar包,并将该jar上传到Spark集群中的某个节点上:

记得,启动你的hdfs和Spark集群,然后使用spark-submit命令提交Spark应用(注意参数的顺序):

可以看下简单的几行代码,但是打成的包就将近百兆,都是封装好的啊,感觉牛人太多了。

 

然后开始进行Spark Submit提交操作,命令如下所示:

[root@master spark-1.6.1-bin-hadoop2.6]# bin/spark-submit \
> --class com.bie.WordCount \
> --master spark://master:7077 \
> --executor-memory 512M \
> --total-executor-cores 2 \
> /home/hadoop/data_hadoop/sparkWordCount-1.0-SNAPSHOT.jar \
> hdfs://master:9000/wordcount.txt \
> hdfs://master:9000/output

或者如下:
bin/spark-submit --class com.bie.WordCount --master spark://master:7077 --executor-memory 512M --total-executor-cores 2 /home/hadoop/data_hadoop/sparkWordCount-1.0-SNAPSHOT.jar hdfs://master:9000/wordcount.txt hdfs://master:9000/outpu

操作如下所示:

可以在图形化页面看到多了一个Application:

然后呢,就出错了,学知识,不出点错,感觉都不正常:

  1 org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [120 seconds]. This timeout is controlled by spark.rpc.askTimeout
  2     at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
  3     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
  4     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
  5     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
  6     at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:76)
  7     at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:101)
  8     at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:77)
  9     at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.removeExecutor(CoarseGrainedSchedulerBackend.scala:359)
 10     at org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend.executorRemoved(SparkDeploySchedulerBackend.scala:144)
 11     at org.apache.spark.deploy.client.AppClient$ClientEndpoint$$anonfun$receive$1.applyOrElse(AppClient.scala:186)
 12     at org.apache.spark.rpc.netty.Inbox$$anonfun$process$1.apply$mcV$sp(Inbox.scala:116)
 13     at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:204)
 14     at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100)
 15     at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:215)
 16     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
 17     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
 18     at java.lang.Thread.run(Thread.java:745)
 19 Caused by: java.util.concurrent.TimeoutException: Futures timed out after [120 seconds]
 20     at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
 21     at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
 22     at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
 23     at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
 24     at scala.concurrent.Await$.result(package.scala:107)
 25     at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
 26     ... 12 more
 27 18/02/23 01:28:46 WARN NettyRpcEndpointRef: Error sending message [message = UpdateBlockInfo(BlockManagerId(driver, 192.168.3.129, 60565),broadcast_1_piece0,StorageLevel(false, true, false, false, 1),2358,0,0)] in 1 attempts
 28 org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 120 seconds. This timeout is controlled by spark.rpc.askTimeout
 29     at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
 30     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
 31     at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
 32     at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
 33     at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185)
 34     at scala.util.Try$.apply(Try.scala:161)
 35     at scala.util.Failure.recover(Try.scala:185)
 36     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
 37     at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
 38     at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
 39     at org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
 40     at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
 41     at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
 42     at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
 43     at scala.concurrent.Promise$class</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值