自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 VS对C语言的调试和python对py脚本的调试区8

Visual Studio (VS)对C语言的调试与 Python对脚本的调试在多个方面存在显著差异,主要源于编译型语言和解释型语言的本质区别,以及两者调试工具链的设计差异。

2025-04-24 17:31:37 556

原创 C语言介绍

int a写初始值叫定义,不写初始值叫声明。严格定义,全局变量的定义只能有一份,int a=3 叫做定义但是声明可以有无数份。extern 在c语言中叫做声明,但在c语言中是特例extern int a等价于int a ,可以省略extern,都是声明在c+语言中在表示声明的时候是不可以省略 extern 的,必须是extern int a 表示声明,int a并不能表示声明,而是定义的意思,只能有一份定义只能有一个extern在c语言中extern可以省略。

2025-04-14 00:19:28 134

原创 串口同步通信和异步通信区别

而异步时钟因为收发两者的时钟是不同的,所以设置了波特率,来使的两者的采样具有一致性。个人理解都是为了实现采样的一致性,即发和收的采样时刻的一致性。同步时钟采用了同步的时钟线进行收发的,;

2024-12-09 13:00:44 246

原创 处理器内部的石英晶体振荡器和RC振荡器比较

处理器内部时钟

2024-11-19 10:16:29 370

原创 相关性以及协方差矩阵和在Z-score下的运用

相关性以及协方差矩阵和在Z-score下的运用

2023-07-12 19:56:59 204

原创 模型训练优化测试的流程

(训练集,核函数,惩罚因子,参数等)

2023-05-18 20:28:16 200

原创 训练和优化模型唯一性

找模型 训练优化模型的目的 就是能够找到最好的一个模型 不变的模型 让他能够适应于绝大部分的测试集都能过预测或者分类的非常好 能够有很好的表现 而不是来一个测试集 你选择一个模型 来一个测试集 再换一个模型 虽然表现好 但是这样 太繁琐 就相当于机器模型一样 来回变 根本达不到脱离人类的目的 机器学习 就是脱离人手 让机器自己去做。

2023-05-01 15:55:13 148

原创 【无标题】

因为麻雀搜索算法是随机的 所以我每次只是盯着测试集的准确率最高 选一次结果 那么相同的测试集 我还去运行 又出了一次结果 因为两次都是麻雀搜索算法搜索的模型的参数 ,两次参数很准确率都不一样,然后运行的相同的测试集,那么我的模型其实都变了 因为测试集毕竟和训练集不一样 那么 你选的测试集可能对应的是我的模型的准确率并不一定是最高的 也许还没运行出来,。a3是最高的 ,那么他所对应的参数c3 b3也就是最优的,最好的,最适应于这个训练的数据的这个模型的。

2023-04-30 01:37:41 120

原创 matlab结构体

这里node就是定义的结构体,node(1),node(2)...为每个结构体的存储单位,就像矩阵a(1),a(2)一样,每个单位包括name,age等不同数据。这里的构建是直接给每个结构体单位的每个数据赋值。node.BMI=(node.weight*0.4)./(node.height*0.03).^2 %注意是。如果给定了不同的数据,我们也可以使用table函数,“一步登天”的创建好结构体。结构体是一种可以存储不同类型数据的数据结构,我们可以通过例子来理解一下。node(1,2) %查询。

2023-04-21 17:39:05 3066

原创 MATLAB函数句柄

函数句柄简介:函数句柄(function handle)是MATLAB中的一类特殊的数据结构,它的地位类似于其它计算机语言里的函数对象(Javascript,Python),函数指针(C++),或者函数引用(Perl)。图形句柄就指一个图形,在生成图形时同时得到一代号,如语句 h=plot(x,y),h 就是一个图形句柄,在后来的某一个地方就可用h代表这个图,如 set(h,…f=@(x)(x.2)表示匿名函数@(x)(x.2)赋值给f于f表示该函数。函数句柄指指向函数量句柄函数获函数句柄存。

2023-04-21 17:23:48 3753

原创 模型中的参数

模型中的参数分为两种,一种是在模型训练之前就输入的,不会随着训练数据的变化而改变,比如说是超参数,或者是惩罚因子或者核参数;另外一种参数是随着训练数据的变化而变化的参数,比如一组训练数据就会训练出模型内的一组参数。

2023-04-21 14:31:42 1091

原创 SVDD用于多分类

最后可以将所有超球体外的异常的点(误差点)全部计算出来,也就是所有的不属于任何类的点。这些点一定满足 ,到每个超球体的圆心的距离都大于各自的超球体的半径,从而得到这些误差点,不属于任何一类的,然后把属于每一类的点加起来,就是被算法正确分类的,刚才的那些点不属于任何类是被异常分类的,,两者相加就是全部点 ,从而算法正确率就出来了。

2023-04-16 00:19:58 165

原创 SSA优化参数,不同组的被优化的参数却对应着相同的适应度的值。

主要是和数据本身的性质有关的,或者说数据的分布,你用一组数据去计算的时候,找到一组最优参数,是当前数据下的最优解,这个最优解还有可能是局部最优,取决于你的loss函数的设计和随机化算法的选择,所以不同组之间参数可能差别比较大,至于你说的准确度都差不多,说明模型有效,当测试集和训练集分布一致时,或者说差别不大时,那么在训练集上找到的最优参数,再测试集上也不会太差,所以训练集越大越好。为什么这多组数据中我的分类的准确度(适应度函数的值)是几乎固定的,但是我的这两个优化参数是变化的呢?

2023-04-14 09:42:09 378

原创 机器学习中用数据去训练模型本质的通俗理解

首先得定义一个损失函数,加入输入样本,根据前向传播得到预测试。跟真实样本比较,得到损失值,接着采用反向传播,更新权值(参数),来回不断地迭代,直到损失函数很小,准确率达到理想值即可。这时的参数就是模型需要的参数。,参数确定后的函数就是训练的结果,使用模型就是把新的数据代入函数求值。为什么要训练模型,模型是什么,如何训练…本人刚开始接触时也产生过类似地疑问,现在为大家排解这些疑问。确定模型是说自己认为这些数据的特征符合哪个函数。确定模型----训练模型----使用模型。//也就是说确定函数的参数。

2023-04-14 09:31:22 2161

原创 SVDD2D/3D的分界面如何绘制

先找出一个平面,画出由训练集训练的圆或者球的球心(已知半径,公式求出),然后把测试集的数据都放在描绘在对应的这个图里面。因为我们已经算出测试集的每个数据到达圆心或者球心的距离d,这时只需要把相同的d的所对应的测试集的数据描绘起来就形成了这样一个左图的等高线图,每一条等高线上所对应的数据的d都是相同的。当d=R时,此时的d所对应的也就是支持向量,将所有的支持向量连起来就是所对应的分界面。因为数据是通过核函数的映射的,所以即使d相等的点连起来所围成的分界面不一定会呈现圆形。

2023-04-13 16:58:09 214 1

原创 K折交叉验证法(留一法)

一般把数据分成十份,依次取其中的一份作为测试集(验证集)来评估由剩下的九份作为训练集所训练的模型的性能,测试的结果就表示这个模型在当前所分的数据下的性能指标,当然这样重复十次,最后取十次的平均值来作为由这组数据所评估的模型的性能指标。如果数据的量比较多的化,自然是评估模型比较准确的。但是如果数据的量比较少的话,那么如何用这些少的数据量(就自然具有偶然性,评估的模型也就偏向于这个可能的偶然性,那么这样评估的模型自然就是不准确的)来评估模型的性能呢?在评估训练的模型时,如何准确评估模型的性能?

2023-04-13 13:51:34 905 1

原创 麻雀搜索算法适应度函数内部?

但是如果说有验证集的话,就是先用训练集去训练数据,训练出模型,然后用验证集去测试模型,当然适应度函数的值也是用验证集测试的模型的性能来表示的。在这种群优化算法函数内部目标函数里面实际上是原算法(被优化参数的算法)的一个正常的用训练集训练模型,然后用测试集(或者使用验证集也行)测试模型性能的一个完整的SVDD算法的流程。,也就是如果没有验证集的话,就是先用训练集去训练数据,训练出模型,然后用测试集去测试模型,当然适应度函数的值也是用测试集测试的模型的性能来表示的。

2023-04-13 13:11:22 501 1

原创 用全部正常样本去训练(SVDD)所得到的超球体,得到固定的球心和半径,然后用异常样本测试时结果显示异常样本到超球体球心距离都是一样的,原因可能是哪些?

高斯核函数有一个径向基范围,处于径向以内,距离的变化很敏感,径向以外,距离的变化平缓,最后稳定在某常数。当径向范围固定,异常样本的幅值过大,或者径向范围过大,异常样本的幅值固定时,会出现高斯核函数的值几乎是定值的情况,结合SVDD的距离公式,就能知道异常样本距离都是一样的原因了。可以尝试调整高斯核函数的参数,或者把核函数换成其他类型的,比如多项式核,由于多项式核的性质和高斯核不一样,这时候异常样本的距离应该是不一样的。

2023-04-12 00:11:51 287 1

知识领域付费软件功能 白净项目

知识领域付费软件功能 白净项目

2025-06-03

新建文件夹资料111111

新建文件夹资料111111

2025-05-26

matlab的使用方法

matlab的使用方法

2025-05-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除