- 博客(17)
- 收藏
- 关注
原创 MANIQA 无参 GAN 失真图像质量评估 CVPRW2022
无参图像质量评估方法,不仅可以对常见的图像瑕疵评分,也可以对 GAN 产生的失真图像进行合理的评分
2023-06-14 20:44:35 1755
原创 【论文笔记】Transformer - Attention is All You Need
大白话讲解 Transformer - Attention is All You Need 这篇文章
2023-06-08 17:27:48 246
原创 BM3D 图像降噪算法与 Python 实现
图像降噪 - Block Matching and 3D Filtering (BM3D) 算法与 Python 实现
2023-05-16 11:26:59 2989 2
原创 NLM 图像降噪算法以及 Python 实现
经典 Non-local Means Denoising(NLM) 图像降噪算法和 Python 实现
2023-05-04 23:21:52 2303 2
原创 图像颜色映射曲线自动调节 CURL: Nerual Curve Layers for Global Image Enhancemet
是否可以设计了一个神经网络,他预测三个不同的颜色空间(HSV, CIELab, RGB)的映射曲线来对图像进行增强。
2023-02-26 18:47:54 577
原创 图像自适应的 3DLUTs - Image Adaptive 3D Lookup table
发表于 2020 TPAMI,是关于图像色彩增强的,是一篇很屌的文章。目前广泛使用的图像色彩调整都是基于 LUT 来做的,而 LUT 图是由人工设计的,这篇文章结合了 CNN 和 LUT,能够根据图片内容自动生产适合该图的 LUT 图,且速度还贼快不熟悉 LUT 的可以戳这里看看https://www.zhangxinxu.com/wordpress/2020/02/3d-lut-principle/创新点模型架构论文里有一大块很复杂的推导公式,其实就是三线性插值的计算和求导方式,在源码中这一块
2022-05-30 11:23:58 4008 2
原创 【视频降噪】 GoPro FastDVDNet 看名字就知道它很快
CVPR 2020 年论文,来自 GoPro视频降噪和图片降噪区别在于视频降噪后输出的结果,观感上能否保持连贯和平滑,而为了达到这个目的,算法在对视频其中一帧进行降噪时,需要参考那一帧相邻帧的信息。创新点不需要光流或运动估计,降低了计算量,也避免了引入光流带来的伪影关于创新点一,文章是用时序和多尺度的级联 U-Net 来在网络架构内部代替光流来进行块对齐的网络架构网络由 4 个 block 组成,每一个 block 设计上有以下几个考虑的点1、在上采样这里,采用了 PixelShuffl
2022-05-15 20:43:41 2319 4
原创 基于可学习参数的深度导向滤波器 Deep Guide Filter
深度导向滤波器这是一篇传统方法和深度学习方法结合的算法,他在引导滤波器(关于这块可查阅我之前的文章)上融入了可学习的参数,从而赋予了更强大的拟合能力,从而可以应用在多个图像处理任务上关于 Deep Guide Filter (后文简称 DFG)其实有很多博客文章都有,我阅读论文和相关博文后做了整合并加上了自己的思考和理解。首先我们来看看 DFG 能应用到什么场景上去,文中给出了例子,从左到右分别是图像修复和增强,超分辨率,图像去雾,图像显著区域检测,深度估计文邹邹一点的说法是,DFG 可以解决
2021-10-17 18:00:00 4001 1
原创 美颜磨皮算法之保边(双边&引导)滤波器原理及 Python 实现
保边滤波是对图像操作后,不会抹掉边缘的部分(如下图所示),属于非线性的滤波方法,常见的保边滤波有双边滤波和引导滤波,应用场景是去噪和磨皮本文介绍两种保边滤波器,分别是双边滤波器和导向滤波器。并且提供对应的 python 实现源码。关于公式推导,尾部有参考链接,这里只会给出结论和大致原理。双边滤波先来看看双边滤波器的计算公式BilateralFilter(i,j)=∑k,lf(k,l)∗w(i,j,k,l)∑k,lw(i,j,k,l)BilateralFilter(i,j)=\frac{\sum_
2021-10-07 11:39:52 4268 1
原创 GPU 资源紧张又想尝试神经架构搜索,试试 Once for All 吧(源码讲解)
之前的文章中讲到了轻量化网络架构的设计,也提到了模型压缩除了轻量化架构外,还有模型剪枝模型架构搜索模型架构搜索(NAS)也是一个非常有效的模型压缩方法,相比人工设计架构和剪枝,机器搜索架构更高效且效果更好,但是之前基于遗传和强化算法的模型架构搜索方法需要大量的 GPU 资源支持,且训练时间长,限制了 NAS 的应用,随着研究进展,出现了一些不那么耗时耗资源的方法。Once for All (简称 OFA)就是这样一种网络架构搜索方法,这里会结合论文+源码的方式来进行讲解首先,为了让大家更好的理
2021-08-07 21:57:11 899 1
原创 移动端轻量级卷积网络近三年进展(MobileNet V3, Blaze, GhostNet)- 附源码讲解
CNN 在图像分类,分割检测等领域获得广泛应用,在 PC 端运行模型虽然精度高,但参数量和算力都不是移动端的设备可以承受的,为了让深度学习模型可以在移动端高效的运行,目前业界主流的解决手段有三种。网络架构设计:思想在于设计能在移动端高效运行的轻量化网络架构(本文讲的算法都属于此手段)通道剪枝:对网络中的通道层进行重要性分析,裁剪重要程度低的层来降低网络的计算量模型搜索:给定搜索空间,使用强化,遗传等算法在搜索空间中找到满足给定计算量的模型架构这里主要介绍近三年比较出名的移动端轻量级网
2021-08-07 21:55:01 2089
原创 强制转换符 static_cast, dynamic_cast, reinterpret_cast, const_cast
为啥在 C++ 中会有这么多转换符号C 风格转换风格简单,但是主要存在下面两点缺点:转换随意,可以在任意类型间转换,转换间差异很大。没有统一的关键字和标识符,代码排查时容易遗漏疏忽。所以,针对场景需求不同,C++ 提供了四种转换类型来解决 C 中的缺点。对类型转换做了细分,提供了四种不同的类型转换,支持不同需求的转换。类型转换有了统一的标识符,利于代码排查和检查。static_cast用法:static_cast(expression)把 expression 转换为 type-
2020-06-14 15:36:25 441
原创 Android 开发中集成 OpenCV (java, c++),以及缩减库大小
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar
2020-06-11 23:12:34 2596 3
翻译 (译)在Android中使用并发提高应用性能
原文链接 : Using concurrency to improve speed and performance in Android原文作者 : Ali Muzaffar译文出自 : 掘金翻译计划译者 : edvardHua校对者: JOJO、Jing KE我们知道,在Android框架中提供了很多异步处理的工具类。然而,他们中大部分实现是通过提供单一的后台线程来处理任务队列的。如果我
2016-03-20 20:52:38 788
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人