Hadoop2.7.5-HBase1.2.6伪分布式安装
本文已经转换成为pdf格式,下载地址为:https://download.csdn.net/download/u011669700/10273667
本次软件安装包都默认装在 /root/bigdata目录下:
本机配置的软件版本分别为
1. Java - java1.8.0_161
2. Hadoop - hadoop2.7.5
3. Zookeeper - zoopkeeper3.4.11
4. Hbase - hbase1.2.6
一、安装Java
1.1 解压Java安装包
tar -zxvf jdk-8u161-linux-x64.tar.gz
1.2 导入环境变量
编辑配置文件
vim /etc/profile
输入以下内容
export JAVA_HOME=/root/bigdata/jdk1.8.0_161
export PATH=$JAVA_HOME/bin:$PATH
之后使用命令
source /etc/profile
使得修改后的配置文件生效。
1.3 检查Java是否导入
java -version
如果看到以下信息则表示安装成功
java version "1.8.0_161"
Java(TM) SE Runtime Environment (build 1.8.0_161-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.161-b12, mixed mode)
如果没有看到则检查路径是否正确。
二、安装Hadoop
2.1 解压安装包
tar -zxvf hadoop-2.7.5.tar.gz
2.2 配置环境变量
使用vim /etc/profile
添加以下内容
# Hadoop的安装路径
export HADOOP_HOME=/root/bigdata/hadoop-2.7.5
export PATH=$HADOOP_HOME/sbin:$PATH
export PATH=$HADOOP_HOME/bin:$PATH
# 以下两行最好加上,若没有启动Hadoop、hbase时都会有没加载lib成功的警告
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"
2.3 配置hadoop-env.sh、yarn-env.sh
这两个文件均在安装目录下,在本文中,这两个文件的地址分别为:
- /root/bigdata/hadoop-2.7.5/etc/hadoop/hadoop-env.sh
- /root/bigdata/hadoop-2.7.5/etc/hadoop/yarn-env.sh
使用vim编辑这两个文件,在其中添加如下内容:
# Java 安装目录
export JAVA_HOME=/root/bigdata/jdk1.8.0_161
2.4 查看IP地址并配置host文件
输入以下命令查看IP地址:
ifconfig
如果看到如下信息:
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.10.5 netmask 255.255.255.0 broadcast 192.168.10.255
其中inet后面所跟的IP地址为本机的IP地址。
接下来修改host文件vim /etc/hosts
192.168.10.5 master
做一个ip和域名的映射,接下来使用Ping命令查看是否映射成功
ping master
如果看到如下的后缀信息,则成功:
icmp_seq=1 ttl=64 time=0.032 ms
icmp_seq=2 ttl=64 time=0.032 ms
...
2.5 配置基本相关xml
2.5.1 配置core-site.xml
在Hadoop安装目录下 编辑 vim etc/hadoop/core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name> <!--NameNode 的URI-->
<value>hdfs://master:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name> <!--hadoop临时文件的存放目录-->
<value>/root/bigdata/hadoop2.7.5/temp</value>
</property>
</configuration>
2.5.2 配置hdfs-site.xml
在Hadoop安装目录下 编辑 vim etc/hadoop/hdfs-site.xml
<configuration>
<property> <!--namenode持久存储名字空间及事务日志的本地文件系统路径-->
<name>dfs.namenode.name.dir</name>
<value>/root/bigdata/hadoop2.7.5/dfs/name</value>
<!--目录无需预先创建,会自动创建-->
</property>
<property> <!--DataNode存放块数据的本地文件系统路径-->
<name>dfs.datanode.data.dir</name>
<value>/root/bigdata/hadoop2.7.5/dfs/data</value>
</property>
<property> <!--数据需要备份的数量,不能大于集群的机器数量,默认为3-->
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>master:9001</value>
</property>
<property> <!--设置为true,可以在浏览器中IP+port查看-->
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
2.5.3 配置mapred-site.xml
在Hadoop安装目录下 编辑 vim etc/hadoop/mapred-site.xml
<configuration>
<property> <!--mapreduce运用了yarn框架,设置name为yarn-->
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property> <!--历史服务器,查看Mapreduce作业记录-->
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
</property>
</configuration>
2.5.4 配置yarn-site.xml
在Hadoop安装目录下 编辑 vim etc/hadoop/yarn-site.xml
<configuration>
<property> <!--NodeManager上运行的附属服务,用于运行mapreduce-->
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property> <!--ResourceManager 对客户端暴露的地址-->
<name>yarn.resourcemanager.address</name>
<value>master:8032</value>
</property>
<property> <!--ResourceManager 对ApplicationMaster暴露的地址-->
<name>yarn.resourcemanager.scheduler.address</name>
<value>master:8030</value>
</property>
<property> <!--ResourceManager 对NodeManager暴露的地址-->
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:8031</value>
</property>
<property> <!--ResourceManager 对管理员暴露的地址-->
<name>yarn.resourcemanager.admin.address</name>
<value>master:8033</value>
</property>
<property> <!--ResourceManager 对外web暴露的地址,可在浏览器查看-->
<name>yarn.resourcemanager.webapp.address</name>
<value>master:8034</value>
</property>
</configuration>
2.6 配置slaves文件
在Hadoop安装目录下,编辑vim etc/hadoop/slaves
去除默认的localhost,加入master ,保存退出。
如果是分布式, 则在其中添加 slave节点的ip地址,或者做IP映射之后的名称,例如slave1等等
再通过远程复制命令scp,将配置好的Hadoop复制到各个节点对应位置
例如:
scp -r /opt/hadoop-2.7.3 192.168.172.72:/opt/hadoop-2.7.3
2.7 Hadoop的启动与停止
2.7.1 启动
在Master服务器启动hadoop,从节点会自动启动,进入Hadoop目录下
输入命令,bin/hdfs namenode -format
进行hdfs格式化
输入命令,sbin/start-all.sh
,进行启动
也可以分开启动,sbin/start-dfs.sh
、sbin/start-yarn.sh
之后输入jps
,查看运行在jvm上面的进程。
这里搭建的是伪分布式,所以看到如下内容则证明运行成功:
18081 NodeManager
17334 DataNode
17561 SecondaryNameNode
17178 NameNode
18237 Jps
17775 ResourceManager
如果是分布式环境:
- master上应该看到ResourceManager、NameNode、SecondaryNameNode进程
- slave上应该看到DataNode、NodeManager进程
在浏览器中输入地址:
1. http://master:50070查看master状态
2. http://master:8034查看集群状态
2.7.2 停止服务
进入Hadoop目录下,输入命令:sbin/stop-all.sh,即可停止Hadoop进程
三、zookeeper安装
3.1 解压
tar -zxvf zookeeper-3.4.11.tar.gz
3.2 修改zookeeper配置文件
进入zookeeper的目录,修改配置文件
cp conf/zoo_sample.cfg conf/zoo.cfg
使用vim conf/zoo.cfg
中的文件内容:
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/root/bigdata/zookeeper-3.4.11/data
dataLogDir=/root/bigdata/zookeeper-3.4.11/logs
clientPort=2181
server.1=u04rtv01.yaya.corp:2888:3888
3.3 创建data和Log文件夹
mkdir data
mkdir log
3.4 在zoo.cfg中的dataDir指定的目录下,新建myid文件
例如:$ZK_INSTALL/data下,新建myid。在myid文件中输入1。表示为server.1。
如果为snapshot/d_2,则myid文件中的内容为 2,依此类推。
vim data/myid
3.5 启动和停止
3.5.1 启动
bin/zkServer.sh start
在启动之后可以使用bin/zkServer.sh status
来查看运行状态,在本机状态如下:
ZooKeeper JMX enabled by default
Using config: /root/bigdata/zookeeper-3.4.11/bin/../conf/zoo.cfg
Mode: standalone
3.5.2 停止
bin/zkServer.sh stop
3.5.3 连接Zookeeper
# 适用于Java开发
bin/zkCli.sh -server 127.0.0.1:2181
四、HBase
4.1 解压
tar -zxvf hbase-1.2.6-bin.tar.gz
4.2 配置环境变量
使用命令vim /etc/profile
:
export HBASE_HOME=/root/bigdata/hbase-1.2.6
export PATH=$HBASE_HOME/bin:$PATH
4.3 配置conf/hbase-env.sh
vim /root/bigdata/hbase-1.2.6/conf/hbase-env.sh
在其中加入Java环境变量
# Java 安装目录
export JAVA_HOME=/root/bigdata/jdk1.8.0_161
# 如果使用自带的zookeeper则删除下行注释使用hbase自带zookeeper
# export HBASE_MANAGES_ZK=true
4.4 配置hbase-site.xml
在conf目录下:
<configuration>
<property>
<name>hbase.rootdir</name> <!-- hbase存放数据目录 -->
<value>hdfs://master:9000/opt/hbase/hbase_db</value>
<!-- 端口要和Hadoop的fs.defaultFS端口一致-->
</property>
<property>
<name>hbase.cluster.distributed</name> <!-- 是否分布式部署 -->
<value>true</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name> <!-- list of zookooper -->
<value>master</value>
</property>
<property><!--zookooper配置、日志等的存储位置 -->
<name>hbase.zookeeper.property.dataDir</name>
<value>/root/bigdata/zookeeper-3.4.11/data</value>
</property>
</configuration>
4.5 配置regionservers
编辑 vim hbase-1.2.6/conf/regionservers
去掉默认的localhost,加入master
如果为分布式 加入slave1、slave2,保存退出
然后把在master上配置好的hbase,通过远程复制命令
scp -r /opt/hbase-1.2.6 192.168.172.72/73:/opt/hbase-1.2.6
复制到slave1、slave2对应的位置
4.6 启动与停止Hbase
4.6.1 启动
在Hadoop已经启动成功的基础上,输入start-hbase.sh
,过几秒钟便启动完成,接下来使用jps
查看运行进程:
18081 NodeManager
22341 HRegionServer
22805 Jps
17334 DataNode
19878 QuorumPeerMain
22168 HMaster
17561 SecondaryNameNode
17178 NameNode
17775 ResourceManager
看到额外的HMaster、HQuormPeer、HRegionServer、HQuorumPeer进程则是启动成功。
如果是分布式,这应该在:
master节点上看到HMaster、HQuormPeer服务
slave节点上看到HRegionServer、HQuorumPeer服务
4.6.2 停止
使用bin/stop-hbase.sh
命令即可停止Hbase服务
4.6.3 hbase shell
输入hbase shell
命令之后,就可以进入hbase命令模式,在命令行模式下键入status
即可查看当前信息,本机的信息状态为:
1 active master, 0 backup masters, 1 servers, 0 dead, 2.0000 average load
使用exit
命令就可以退出命令行模式。
参考链接: