kafka - 生产者其他重要配置

kafka - 生产者其他重要配置

生产者还有很多可配置的参数,在 Kafka 文档里都有说明,它们大部分都有合理的默认值,所以没有必要去修改它们。不过有几个参数在内存使用、性能和可靠性方面对生产者影响比较大


acks

acks 参数指定了必须要有多少个分区副本收到消息,生产者才会认为消息写入是成功的。这个参数对消息丢失的可能性有重要影响。该参数有如下选项。

  1. 如果 acks=0,生产者在成功写入消息之前不会等待任何来自服务器的响应。也就是说,如果当中出现了问题,导致服务器没有收到消息,那么生产者就无从得知,消息也就丢失了。不过,因为生产者不需要等待服务器的响应,所以它可以以网络能够支持的最大速度发送消息,从而达到很高的吞吐量。
  2. 如果 acks=1,只要集群的首领节点收到消息,生产者就会收到一个来自服务器的成功响应。如果消息无法到达首领节点(比如首领节点崩溃,新的首领还没有被选举出来),生产者会收到一个错误响应,为了避免数据丢失,生产者会重发消息。不过,如果一个没有收到消息的节点成为新首领,消息还是会丢失。这个时候的吞吐量取决于使用的是同步发送还是异步发送。如果让发送客户端等待服务器的响应(通过调用 Future 对象的 get() 方法),显然会增加延迟(在网络上传输一个来回的延迟)。如果客户端使用回调,延迟问题就可以得到缓解,不过吞吐量还是会受发送中消息数量的限制(比如,生产者在收到服务器响应之前可以发送多少个消息)。
  3. 如果 acks=all,只有当所有参与复制的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应。这种模式是最安全的,它可以保证不止一个服务器收到消息,就算有服务器发生崩溃,整个集群仍然可以运行。不过,它的延迟比 acks=1 时更高,因为我们要等待不只一个服务器节点接收消息。

buffer.memory

该参数用来设置生产者内存缓冲区的大小,生产者用它缓冲要发送到服务器的消息。如果应用程序发送消息的速度超过发送到服务器的速度,会导致生产者空间不足。这个时候, send() 方法调用要么被阻塞,要么抛出异常,取决于如何设置 block.on.buffer.full 参数(在 0.9.0.0 版本里被替换成了 max.block.ms,表示在抛出异常之前可以阻塞一段时间)。

compression.type

默认情况下,消息发送时不会被压缩。该参数可以设置为 snappy、gzip 或 lz4,它指定了消息被发送给 broker 之前使用哪一种压缩算法进行压缩。

  1. snappy 压缩算法由 Google 发明,它占用较少的 CPU,却能提供较好的性能和相当可观的压缩比,如果比较关注性能和网络带宽,可以使用这种算法。
  2. gzip 压缩算法一般会占用较多的 CPU,但会提供更高的压缩比,所以如果网络带宽比较有限,可以使用这种算法。

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。

retries

生产者从服务器收到的错误有可能是临时性的错误(比如分区找不到首领)。在这种情况下,retries 参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试并返回错误。

默认情况下,生产者会在每次重试之间等待 100ms,不过可以通过 retry.backoff.ms 参数来改变这个时间间隔。建议在设置重试次数和重试时间间隔之前,先测试一下恢复一个崩溃节点需要多少时间(比如所有分区选举出首领需要多长时间),让总的重试时间比 Kafka 集群从崩溃中恢复的时间长,否则生产者会过早地放弃重试。不过有些错误不是临时性错误,没办法通过重试来解决(比如“消息太大”错误)。

一般情况下,因为生产者会自动进行重试,所以就没必要在代码逻辑里处理那些可重试的错误。你只需要处理那些不可重试的错误或重试次数超出上限的情况。

batch.size

当有多个消息需要被发送到同一个分区时,生产者会把它们放在同一个批次里。该参数指定了一个批次可以使用的内存大小,按照字节数计算(而不是消息个数)。当批次被填满,批次里的所有消息会被发送出去。不过生产者并不一定都会等到批次被填满才发送,半满的批次,甚至只包含一个消息的批次也有可能被发送。所以就算把批次大小设置得很大,也不会造成延迟,只是会占用更多的内存而已。但如果设置得太小,因为生产者需要更频繁地发送消息,会增加一些额外的开销。

linger.ms

该参数指定了生产者在发送批次之前等待更多消息加入批次的时间。KafkaProducer 会在批次填满或 linger.ms 达到上限时把批次发送出去。默认情况下,只要有可用的线程,就算批次里只有一个消息,生产者也会把消息发送出去。

把 linger.ms 设置成比 0 大的数,让生产者在发送批次之前等待一会儿,使更多的消息加入到这个批次。虽然这样会增加延迟,但也会提升吞吐量(因为一次性发送更多的消息,每个消息的开销就变小了)。

client.id

该参数可以是任意的字符串,服务器会用它来识别消息的来源,还可以用在日志和配额指标里。

max.in.flight.requests.per.connection

该参数指定了生产者在收到服务器响应之前可以发送多少个消息。它的值越高,就会占用越多的内存,不过也会提升吞吐量。把它设为 1 可以保证消息是按照发送的顺序写入服务器的,即使发生了重试。

timeout.ms、request.timeout.ms 和 metadata.fetch.timeout.ms

request.timeout.ms 指定了生产者在发送数据时等待服务器返回响应的时间。

metadata.fetch.timeout.ms 指定了生产者在获取元数据(比如目标分区的首领是谁)时等待服务器返回响应的时间。如果等待响应超时,那么生产者要么重试发送数据,要么返回一个错误(抛出异常或执行回调)。

timeout.ms 指定了 broker 等待同步副本返回消息确认的时间,与 asks 的配置相匹配——如果在指定时间内没有收到同步副本的确认,那么 broker 就会返回一个错误。

max.block.ms

该参数指定了在调用 send() 方法或使用 partitionsFor() 方法获取元数据时生产者的阻塞时间。当生产者的发送缓冲区已满,或者没有可用的元数据时,这些方法就会阻塞。在阻塞时间达到 max.block.ms 时,生产者会抛出超时异常。

max.request.size

该参数用于控制生产者发送的请求大小。它可以指能发送的单个消息的最大值,也可以指单个请求里所有消息总的大小。例如,假设这个值为 1MB,那么可以发送的单个最大消息为 1MB,或者生产者可以在单个请求里发送一个批次,该批次包含了 1000 个消息,每个消息大小为 1KB。另外,broker 对可接收的消息最大值也有自己的限制(message.max.bytes),所以两边的配置最好可以匹配,避免生产者发送的消息被 broker 拒绝。

receive.buffer.bytes 和 send.buffer.bytes

这两个参数分别指定了 TCP socket 接收和发送数据包的缓冲区大小。如果它们被设为 -1,就使用操作系统的默认值。如果生产者或消费者与 broker 处于不同的数据中心,那么可以适当增大这些值,因为跨数据中心的网络一般都有比较高的延迟和比较低的带宽。

顺序保证

Kafka 可以保证同一个分区里的消息是有序的。也就是说,如果生产者按照一定的顺序发送消息,broker 就会按照这个顺序把它们写入分区,消费者也会按照同样的顺序读取它们。

在某些情况下,顺序是非常重要的。例如,往一个账户存入 100 元再取出来,这个与先取钱再存钱是截然不同的。不过,有些场景对顺序不是很敏感。

如果把 retries 设为非零整数,同时把 max.in.flight.requests.per.connection 设为比 1 大的数,那么,如果第一个批次消息写入失败,而第二个批次写入成功,broker 会重试写入第一个批次。如果此时第一个批次也写入成功,那么两个批次的顺序就反过来了。

一般来说,如果某些场景要求消息是有序的,那么消息是否写入成功也是很关键的,所以不建议把 retries 设为 0。可以把 max.in.flight.requests.per.connection 设为 1,这样在生产者尝试发送第一批消息时,就不会有其他的消息发送给 broker。不过这样会严重影响生产者的吞吐量,所以只有在对消息的顺序有严格要求的情况下才能这么做。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值