跳格子问题——阿里笔试

有1,2,3,......无穷个格子,你从1号格子出发,每次1/2概率向前跳一格,1/2概率向前跳两格,走到格子编号为4的倍数时结束,结束时期望走的步数为____。
  • 2
  • 12/5
  • 14/5
  • 16/5
  • 18/5
  • 4

这个问题,很显然考察的是递归问题:
定义step(i,j)为第i号格子带第j号格子的期望值;
step(1,4)为从第一格跳到第四格的期望,要到第四格,则只能先到第二格(期望0.5*(step(1,2)+1))或者是第三格(期望0.5*(step(1,3)+1));其中1表示到达第2格或者第3个之后,跳到第4格还需要1步。
故有
step(1,4)=0.5*(step(1,2)+1)+0.5*(step(1,3)+1)=1+0.5*(step(1,2)+step(1,3))
同理有
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值