NYOJ 58 最少步数(DFS)



时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 4
描述

这有一个迷宫,有0~8行和0~8列:

 1,1,1,1,1,1,1,1,1
 1,0,0,1,0,0,1,0,1
 1,0,0,1,1,0,0,0,1
 1,0,1,0,1,1,0,1,1
 1,0,0,0,0,1,0,0,1
 1,1,0,1,0,1,0,0,1
 1,1,0,1,0,1,0,0,1
 1,1,0,1,0,0,0,0,1
 1,1,1,1,1,1,1,1,1

0表示道路,1表示墙。

现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?

(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)

输入
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
随后n行,每行有四个整数a,b,c,d(0<=a,b,c,d<=8)分别表示起点的行、列,终点的行、列。
输出
输出最少走几步。
样例输入
2
3 1  5 7
3 1  6 7
样例输出
12
11



#include <iostream>
#include <cstring>
#include <string>
#include <climits>

using namespace std;

int ans[9][9]={
	{1,1,1,1,1,1,1,1,1},
	{1,0,0,1,0,0,1,0,1},
	{1,0,0,1,1,0,0,0,1},
	{1,0,1,0,1,1,0,1,1},
	{1,0,0,0,0,1,0,0,1},
	{1,1,0,1,0,1,0,0,1},
	{1,1,0,1,0,1,0,0,1},
	{1,1,0,1,0,0,0,0,1},
	{1,1,1,1,1,1,1,1,1},
};

const int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};

int dp[9][9];
int m1,m2,m3,m4,s;

void DFS(int lhs, int rhs,int tmd)
{
	if(ans[lhs][rhs])
		return;
	if((lhs==m3) && (rhs==m4))
	{
		if(s>tmd)
			s=tmd;
		return;
	}

	++tmd;
	ans[lhs][rhs]=1;
	for(int i=0;i<4;i++)
	{
		int t1=lhs+dir[i][0];
		int t2=rhs+dir[i][1];
		if (t1>=0 && t1<9 && t2>=0 && t2<9)
			DFS(t1,t2,tmd);
	}
	ans[lhs][rhs]=0;
}

int main()
{
	int n;
	cin>>n;
	while(n--)
	{
		cin>>m1>>m2>>m3>>m4;

		s=INT_MAX;
		DFS(m1,m2,0);

		cout<<s<<endl;

	}
	return 0;
}







时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 4
描述

这有一个迷宫,有0~8行和0~8列:

 1,1,1,1,1,1,1,1,1
 1,0,0,1,0,0,1,0,1
 1,0,0,1,1,0,0,0,1
 1,0,1,0,1,1,0,1,1
 1,0,0,0,0,1,0,0,1
 1,1,0,1,0,1,0,0,1
 1,1,0,1,0,1,0,0,1
 1,1,0,1,0,0,0,0,1
 1,1,1,1,1,1,1,1,1

0表示道路,1表示墙。

现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?

(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)

输入
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
随后n行,每行有四个整数a,b,c,d(0<=a,b,c,d<=8)分别表示起点的行、列,终点的行、列。
输出
输出最少走几步。
样例输入
2
3 1  5 7
3 1  6 7
样例输出
12
11




#include <iostream>
#include <cstring>
#include <string>
#include <queue>

using namespace std;

typedef struct Node
{
	int lhs,rhs;
}Node;

const int ans[9][9]={
	{1,1,1,1,1,1,1,1,1},
	{1,0,0,1,0,0,1,0,1},
	{1,0,0,1,1,0,0,0,1},
	{1,0,1,0,1,1,0,1,1},
	{1,0,0,0,0,1,0,0,1},
	{1,1,0,1,0,1,0,0,1},
	{1,1,0,1,0,1,0,0,1},
	{1,1,0,1,0,0,0,0,1},
	{1,1,1,1,1,1,1,1,1},
};

const int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};

int dp[9][9];
int visited[9][9];

Node m3;

void BFS(Node t)
{
	queue<Node>	q;
	Node tt;
	q.push(t);

	while (1)
	{
		if((t.lhs==m3.lhs) && (t.rhs==m3.rhs))
			break;

		for(int i=0;i<4;i++)
		{
			tt.lhs=t.lhs+dir[i][0];
			tt.rhs=t.rhs+dir[i][1];
			if (tt.lhs>=0 && tt.lhs<9 && tt.rhs>=0 && tt.rhs<9)
				if(0==visited[tt.lhs][tt.rhs] && 0==ans[tt.lhs][tt.rhs])
				{
					visited[tt.lhs][tt.rhs]=1;
					dp[tt.lhs][tt.rhs]=dp[t.lhs][t.rhs]+1;
					q.push(tt);
				}
		}
		t=q.front();
		q.pop();
	}

}

int main()
{
	int n;
	Node m1;
	cin>>n;
	while(n--)
	{
		cin>>m1.lhs>>m1.rhs>>m3.lhs>>m3.rhs;

		memset(dp,0,sizeof(dp));
		memset(visited,0,sizeof(visited));

		visited[m1.lhs][m1.rhs]=1;
		BFS(m1);

		cout<<dp[m3.lhs][m3.rhs]<<endl;

	}
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值