时间限制:
3000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
这有一个迷宫,有0~8行和0~8列:
1,1,1,1,1,1,1,1,1
1,0,0,1,0,0,1,0,1
1,0,0,1,1,0,0,0,1
1,0,1,0,1,1,0,1,1
1,0,0,0,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,0,0,0,1
1,1,1,1,1,1,1,1,10表示道路,1表示墙。
现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?
(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)
-
输入
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
随后n行,每行有四个整数a,b,c,d(0<=a,b,c,d<=8)分别表示起点的行、列,终点的行、列。
输出
- 输出最少走几步。 样例输入
-
2 3 1 5 7 3 1 6 7
样例输出
-
12 11
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
#include <iostream>
#include <cstring>
#include <string>
#include <climits>
using namespace std;
int ans[9][9]={
{1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,1,0,1},
{1,0,0,1,1,0,0,0,1},
{1,0,1,0,1,1,0,1,1},
{1,0,0,0,0,1,0,0,1},
{1,1,0,1,0,1,0,0,1},
{1,1,0,1,0,1,0,0,1},
{1,1,0,1,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1},
};
const int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
int dp[9][9];
int m1,m2,m3,m4,s;
void DFS(int lhs, int rhs,int tmd)
{
if(ans[lhs][rhs])
return;
if((lhs==m3) && (rhs==m4))
{
if(s>tmd)
s=tmd;
return;
}
++tmd;
ans[lhs][rhs]=1;
for(int i=0;i<4;i++)
{
int t1=lhs+dir[i][0];
int t2=rhs+dir[i][1];
if (t1>=0 && t1<9 && t2>=0 && t2<9)
DFS(t1,t2,tmd);
}
ans[lhs][rhs]=0;
}
int main()
{
int n;
cin>>n;
while(n--)
{
cin>>m1>>m2>>m3>>m4;
s=INT_MAX;
DFS(m1,m2,0);
cout<<s<<endl;
}
return 0;
}
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
这有一个迷宫,有0~8行和0~8列:
1,1,1,1,1,1,1,1,1
1,0,0,1,0,0,1,0,1
1,0,0,1,1,0,0,0,1
1,0,1,0,1,1,0,1,1
1,0,0,0,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,1,0,0,1
1,1,0,1,0,0,0,0,1
1,1,1,1,1,1,1,1,10表示道路,1表示墙。
现在输入一个道路的坐标作为起点,再如输入一个道路的坐标作为终点,问最少走几步才能从起点到达终点?
(注:一步是指从一坐标点走到其上下左右相邻坐标点,如:从(3,1)到(4,1)。)
-
输入
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
随后n行,每行有四个整数a,b,c,d(0<=a,b,c,d<=8)分别表示起点的行、列,终点的行、列。
输出
- 输出最少走几步。 样例输入
-
2 3 1 5 7 3 1 6 7
样例输出
-
12 11
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
#include <iostream>
#include <cstring>
#include <string>
#include <queue>
using namespace std;
typedef struct Node
{
int lhs,rhs;
}Node;
const int ans[9][9]={
{1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,1,0,1},
{1,0,0,1,1,0,0,0,1},
{1,0,1,0,1,1,0,1,1},
{1,0,0,0,0,1,0,0,1},
{1,1,0,1,0,1,0,0,1},
{1,1,0,1,0,1,0,0,1},
{1,1,0,1,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1},
};
const int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
int dp[9][9];
int visited[9][9];
Node m3;
void BFS(Node t)
{
queue<Node> q;
Node tt;
q.push(t);
while (1)
{
if((t.lhs==m3.lhs) && (t.rhs==m3.rhs))
break;
for(int i=0;i<4;i++)
{
tt.lhs=t.lhs+dir[i][0];
tt.rhs=t.rhs+dir[i][1];
if (tt.lhs>=0 && tt.lhs<9 && tt.rhs>=0 && tt.rhs<9)
if(0==visited[tt.lhs][tt.rhs] && 0==ans[tt.lhs][tt.rhs])
{
visited[tt.lhs][tt.rhs]=1;
dp[tt.lhs][tt.rhs]=dp[t.lhs][t.rhs]+1;
q.push(tt);
}
}
t=q.front();
q.pop();
}
}
int main()
{
int n;
Node m1;
cin>>n;
while(n--)
{
cin>>m1.lhs>>m1.rhs>>m3.lhs>>m3.rhs;
memset(dp,0,sizeof(dp));
memset(visited,0,sizeof(visited));
visited[m1.lhs][m1.rhs]=1;
BFS(m1);
cout<<dp[m3.lhs][m3.rhs]<<endl;
}
return 0;
}