割:有容量网络G E'是G中的一些边的集合 如果删去E'后G不再连通 则E'就是G的割
最小割: 容量网络中容量最小的割
UVA 11248
本题的题意就是给定一个有向网络 每条边都有一个容量 问是否存在一个从点1到点N 流量为C的流
如果不存在 是否可以恰好修改一条弧的容量(可以有多种修改方案) 使得存在这样的流
思路:
先求最大流 流量大于等于C就是存在的
否则 需要修改的弧一定是最小割里的弧 依次把这些弧的容量增加到C 然后再求最大流 看最大流量是否至少为C
这题的建图不需要技巧 直接建图就可以
主要的模版还是求最大流的 这题还要求出最小割 需要保存最小割中的边 然后对这条边的容量进行修改!!
代码如下:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>
#define eps 1e-8
#define op operator
#define MOD 10009
#define MAXN 10010
#define INF 0x7fffffff
#define FOR(i,a,b) for(int i=a;i<=b;i++)
#define FOV(i,a,b) for(int i=a;i>=b;i--)
#define REP(i,a,b) for(int i=a;i<b;i++)
#define REV(i,a,b) for(int i=a-1;i>=b;i--)
#define MEM(a,x) memset(a,x,sizeof a)
#define ll __int64
using namespace std;
struct Edge
{
int from,to,cap,flow;
bool operator <(const Edge e) const
{
if(e.from!=from) return from<e.from;
else return to<e.to;
}
Edge() {}
Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow) {}
};
struct Dinic
{
vector<Edge> edges;
vector<int> G[MAXN];
bool vis[MAXN];//BFS使用
int d[MAXN]; //从起点到i的距离
int cur[MAXN]; //当前弧下标
int n,m,s,t,maxflow; //节点数 边数(包括反向弧) 源点编号和弧点编号
void init(int n)
{
this->n=n;
for(int i=0;i<=n;i++)
G[i].clear();
edges.clear();
}
void clearflow()
{
for(int i=0;i<edges.size();i++)
edges[i].flow=0;
}
void addedge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool bfs()
{
MEM(vis,0);
MEM(d,-1);
queue<int> q;
q.push(s);
d[s]=maxflow=0;
vis[s]=1;
while(!q.empty())
{
int u=q.front(); q.pop();
int sz=G[u].size();
for(int i=0;i<sz;i++)
{
Edge e=edges[G[u][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
d[e.to]=d[u]+1;
vis[e.to]=1;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int u,int a)
{
if(u==t||a==0) return a;
int sz=G[u].size();
int flow=0,f;
for(int &i=cur[u];i<sz;i++)
{
Edge &e=edges[G[u][i]];
if(d[u]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
{
e.flow+=f;
edges[G[u][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
}
int Maxflow(int s,int t)
{
this->s=s; this->t=t;
int flow=0;
while(bfs())
{
MEM(cur,0);
flow+=dfs(s,INF);
}
return flow;
}
void reduce()
{
for(int i=0;i<edges.size();i++)
edges[i].cap-=edges[i].flow;
}
void mincut(vector<int> &cut )
{
cut.clear();
for(int i=0;i<edges.size();i++)
{
Edge &e=edges[i];
if(vis[e.from]&&!vis[e.to]&&e.cap>0)
cut.push_back(i);
}
}
}Dic;
vector<int> cut;
vector<Edge> ans;
int main()
{
//freopen("ceshi.txt","r",stdin);
int n,m,c;
int cs=1;
while(scanf("%d%d%d",&n,&m,&c)!=EOF)
{
if(n==0&&m==0&&c==0) break;
Dic.init(n+10);
int s=1,t=n;
while(m--)
{
int u,v,x;
scanf("%d%d%d",&u,&v,&x);
Dic.addedge(u,v,x);
}
printf("Case %d: ",cs++);
int flow=Dic.Maxflow(s,t);
if(flow>=c)
{
printf("possible\n");
continue;
}
else
{
Dic.mincut(cut);
ans.clear();
Dic.reduce();
for(int i=0;i<cut.size();i++)
{
Edge &e=Dic.edges[cut[i]];
e.cap=c;
Dic.clearflow();
if(flow+Dic.Maxflow(s,t)>=c)
ans.push_back(e);
e.cap=0;
}
}
if(ans.empty())
{
printf("not possible\n");
continue;
}
sort(ans.begin(),ans.end());
int first=1;
for(int i=0;i<ans.size();i++)
{
Edge& e=ans[i];
if(first)
{
printf("possible option:(%d,%d)",e.from,e.to);
first=0;
}
else
printf(",(%d,%d)",e.from,e.to);
}
puts("");
}
return 0;
}