UVA 11248 网络扩容 最小割

割:有容量网络G   E'是G中的一些边的集合  如果删去E'后G不再连通  则E'就是G的割

最小割: 容量网络中容量最小的割


UVA 11248 

本题的题意就是给定一个有向网络  每条边都有一个容量  问是否存在一个从点1到点N  流量为C的流

如果不存在 是否可以恰好修改一条弧的容量(可以有多种修改方案) 使得存在这样的流

思路:

先求最大流  流量大于等于C就是存在的  

否则 需要修改的弧一定是最小割里的弧 依次把这些弧的容量增加到C  然后再求最大流 看最大流量是否至少为C

这题的建图不需要技巧 直接建图就可以

主要的模版还是求最大流的  这题还要求出最小割 需要保存最小割中的边 然后对这条边的容量进行修改!!

代码如下:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>

#define eps 1e-8
#define op operator
#define MOD  10009
#define MAXN  10010
#define INF 0x7fffffff

#define FOR(i,a,b)  for(int i=a;i<=b;i++)
#define FOV(i,a,b)  for(int i=a;i>=b;i--)
#define REP(i,a,b)  for(int i=a;i<b;i++)
#define REV(i,a,b)  for(int i=a-1;i>=b;i--)
#define MEM(a,x)    memset(a,x,sizeof a)
#define ll __int64

using namespace std;

struct Edge
{
    int from,to,cap,flow;
    bool operator <(const Edge e) const
    {
        if(e.from!=from)  return from<e.from;
        else return to<e.to;
    }
    Edge() {}
    Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow) {}
};

struct Dinic
{
    vector<Edge> edges;
    vector<int> G[MAXN];
    bool vis[MAXN];//BFS使用
    int d[MAXN];   //从起点到i的距离
    int cur[MAXN]; //当前弧下标
    int n,m,s,t,maxflow;   //节点数 边数(包括反向弧) 源点编号和弧点编号

    void init(int n)
    {
        this->n=n;
        for(int i=0;i<=n;i++)
            G[i].clear();
        edges.clear();
    }

    void clearflow()
    {
        for(int i=0;i<edges.size();i++)
            edges[i].flow=0;
    }

    void addedge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }

    bool bfs()
    {
        MEM(vis,0);
        MEM(d,-1);
        queue<int> q;
        q.push(s);
        d[s]=maxflow=0;
        vis[s]=1;
        while(!q.empty())
        {
            int u=q.front(); q.pop();
            int sz=G[u].size();
            for(int i=0;i<sz;i++)
            {
                Edge e=edges[G[u][i]];
                if(!vis[e.to]&&e.cap>e.flow)
                {
                    d[e.to]=d[u]+1;
                    vis[e.to]=1;
                    q.push(e.to);
                }
            }
        }
        return vis[t];
    }

    int dfs(int u,int a)
    {
        if(u==t||a==0)  return a;
        int sz=G[u].size();
        int flow=0,f;
        for(int &i=cur[u];i<sz;i++)
        {
            Edge &e=edges[G[u][i]];
            if(d[u]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
            {
                e.flow+=f;
                edges[G[u][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if(a==0)  break;
            }
        }
        return flow;
    }

    int Maxflow(int s,int t)
    {
        this->s=s; this->t=t;
        int flow=0;
        while(bfs())
        {
            MEM(cur,0);
            flow+=dfs(s,INF);
        }
        return flow;
    }

    void reduce()
    {
        for(int i=0;i<edges.size();i++)
            edges[i].cap-=edges[i].flow;
    }

    void mincut(vector<int> &cut )
    {
        cut.clear();
        for(int i=0;i<edges.size();i++)
        {
            Edge &e=edges[i];
            if(vis[e.from]&&!vis[e.to]&&e.cap>0)
                cut.push_back(i);
        }
    }

}Dic;

vector<int> cut;
vector<Edge> ans;

int main()
{
//freopen("ceshi.txt","r",stdin);
    int n,m,c;
    int cs=1;
    while(scanf("%d%d%d",&n,&m,&c)!=EOF)
    {
        if(n==0&&m==0&&c==0)  break;
        Dic.init(n+10);
        int s=1,t=n;
        while(m--)
        {
            int u,v,x;
            scanf("%d%d%d",&u,&v,&x);
            Dic.addedge(u,v,x);
        }
        printf("Case %d: ",cs++);
        int flow=Dic.Maxflow(s,t);
        if(flow>=c)
        {
            printf("possible\n");
            continue;
        }
        else
        {
            Dic.mincut(cut);
            ans.clear();
            Dic.reduce();
            for(int i=0;i<cut.size();i++)
            {
                Edge &e=Dic.edges[cut[i]];
                e.cap=c;
                Dic.clearflow();
                if(flow+Dic.Maxflow(s,t)>=c)
                    ans.push_back(e);
                e.cap=0;
            }
        }
        if(ans.empty())
        {
            printf("not possible\n");
            continue;
        }
        sort(ans.begin(),ans.end());
        int first=1;
        for(int i=0;i<ans.size();i++)
        {
            Edge& e=ans[i];
            if(first)
            {
                printf("possible option:(%d,%d)",e.from,e.to);
                first=0;
            }
            else
                printf(",(%d,%d)",e.from,e.to);
        }
        puts("");
    }
    return 0;
}


  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值